001     255621
005     20210129220510.0
024 7 _ |a 10.1103/PhysRevLett.115.117201
|2 doi
024 7 _ |a 0031-9007
|2 ISSN
024 7 _ |a 1079-7114
|2 ISSN
024 7 _ |a 2128/9275
|2 Handle
024 7 _ |a WOS:000361040800007
|2 WOS
024 7 _ |a altmetric:4418989
|2 altmetric
024 7 _ |a pmid:26406851
|2 pmid
037 _ _ |a FZJ-2015-05756
082 _ _ |a 550
100 1 _ |0 P:(DE-HGF)0
|a Rybakov, Filipp N.
|b 0
245 _ _ |a New Type of Stable Particlelike States in Chiral Magnets
260 _ _ |a College Park, Md.
|b APS
|c 2015
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1442833468_28367
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a We present a new type of thermodynamically stable magnetic state at interfaces and surfaces of chiral magnets. The state is a soliton solution of micromagnetic equations localized in all three dimensions near a boundary, and it contains a singularity but nevertheless has finite energy. Both features combine to form a quasiparticle state for which we expect unusual transport and dynamical properties. It exhibits high thermal stability and thereby can be considered as a promising object for fundamental research and practical applications in spintronic devices. We identified the range of existence of such particlelike states in the thickness dependent magnetic phase diagram for helimagnet films and analyzed its stability in comparison with the isolated skyrmion within the conical phase. We provide arguments that such a state can be found in different B20-type alloys, e.g., Mn1−xFexGe, Mn1−xFexSi, Fe1−xCoxSi.
536 _ _ |0 G:(DE-HGF)POF3-142
|a 142 - Controlling Spin-Based Phenomena (POF3-142)
|c POF3-142
|f POF III
|x 0
536 _ _ |0 G:(DE-HGF)POF3-143
|a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|c POF3-143
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Borisov, Aleksandr B.
|b 1
700 1 _ |0 P:(DE-Juel1)130548
|a Blügel, Stefan
|b 2
700 1 _ |0 P:(DE-Juel1)145390
|a Kiselev, Nikolai
|b 3
|e Corresponding author
773 _ _ |0 PERI:(DE-600)1472655-5
|a 10.1103/PhysRevLett.115.117201
|g Vol. 115, no. 11, p. 117201
|n 11
|p 117201
|t Physical review letters
|v 115
|x 1079-7114
|y 2015
856 4 _ |u https://juser.fz-juelich.de/record/255621/files/PhysRevLett.115.117201.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/255621/files/PhysRevLett.115.117201.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/255621/files/PhysRevLett.115.117201.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/255621/files/PhysRevLett.115.117201.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/255621/files/PhysRevLett.115.117201.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/255621/files/PhysRevLett.115.117201.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:255621
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130548
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)145390
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-142
|1 G:(DE-HGF)POF3-140
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
913 1 _ |0 G:(DE-HGF)POF3-143
|1 G:(DE-HGF)POF3-140
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Controlling Configuration-Based Phenomena
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b PHYS REV LETT : 2013
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)9905
|2 StatID
|a IF >= 5
|b PHYS REV LETT : 2013
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
|a American Physical Society Transfer of Copyright Agreement
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
981 _ _ |a I:(DE-Juel1)PGI-1-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21