000255643 001__ 255643
000255643 005__ 20210129220513.0
000255643 0247_ $$2doi$$a10.1007/s11104-015-2502-9
000255643 0247_ $$2WOS$$aWOS:000360644200009
000255643 037__ $$aFZJ-2015-05777
000255643 082__ $$a570
000255643 1001_ $$0P:(DE-Juel1)144686$$aHuber, Katrin$$b0$$eCorresponding author$$ufzj
000255643 245__ $$aSimulating transpiration and leaf water relations in response to heterogeneous soil moisture and different stomatal control mechanisms
000255643 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2015
000255643 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1442913958_334
000255643 3367_ $$2DataCite$$aOutput Types/Journal article
000255643 3367_ $$00$$2EndNote$$aJournal Article
000255643 3367_ $$2BibTeX$$aARTICLE
000255643 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000255643 3367_ $$2DRIVER$$aarticle
000255643 520__ $$aAimsStomata can close to avoid cavitation under decreased soil water availability. This closure can be triggered by hydraulic (‘H’) and/or chemical signals (‘C’, ‘H + C’). By combining plant hydraulic relations with a model for stomatal conductance, including chemical signalling, our aim was to derive direct relations that link soil water availability, expressed as fraction of roots in dry soil (fdry), to transpiration reduction.MethodsWe used the mechanistic soil-root water flow model R-SWMS to verify this relation. Virtual split root experiments were simulated, comparing horizontal and vertical splits with varying fdry and different strengths of stomatal regulation by chemical and hydraulic signals.ResultsTranspiration reduction predicted by the direct relations was in good agreement with numerical simulations. For small enough potential transpiration and large enough root hydraulic conductivity and stomatal sensitivity to chemical signalling isohydric plant behaviour originates from H + C control whereas anisohydric behaviour emerges from C control. For C control the relation between transpiration reduction and fdry becomes independent of transpiration rate whereas H + C control results in stronger reduction for higher transpiration rates.ConclusionDirect relations that link effective soil water potential and leaf water potential can describe different stomatal control resulting in contrasting behaviour.
000255643 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000255643 7001_ $$0P:(DE-Juel1)129548$$aVanderborght, Jan$$b1$$ufzj
000255643 7001_ $$0P:(DE-Juel1)129477$$aJavaux, Mathieu$$b2$$ufzj
000255643 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b3$$ufzj
000255643 773__ $$0PERI:(DE-600)1478535-3$$a10.1007/s11104-015-2502-9$$n1-2$$p109-126$$tPlant and soil$$v394$$x0032-079X$$y2015
000255643 8564_ $$uhttps://juser.fz-juelich.de/record/255643/files/art_10.1007_s11104-015-2502-9.pdf$$yRestricted
000255643 8564_ $$uhttps://juser.fz-juelich.de/record/255643/files/art_10.1007_s11104-015-2502-9.gif?subformat=icon$$xicon$$yRestricted
000255643 8564_ $$uhttps://juser.fz-juelich.de/record/255643/files/art_10.1007_s11104-015-2502-9.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000255643 8564_ $$uhttps://juser.fz-juelich.de/record/255643/files/art_10.1007_s11104-015-2502-9.jpg?subformat=icon-180$$xicon-180$$yRestricted
000255643 8564_ $$uhttps://juser.fz-juelich.de/record/255643/files/art_10.1007_s11104-015-2502-9.jpg?subformat=icon-640$$xicon-640$$yRestricted
000255643 8564_ $$uhttps://juser.fz-juelich.de/record/255643/files/art_10.1007_s11104-015-2502-9.pdf?subformat=pdfa$$xpdfa$$yRestricted
000255643 909CO $$ooai:juser.fz-juelich.de:255643$$pVDB:Earth_Environment$$pVDB
000255643 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000255643 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000255643 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLANT SOIL : 2014
000255643 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000255643 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000255643 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000255643 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000255643 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000255643 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000255643 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000255643 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000255643 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000255643 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000255643 9141_ $$y2015
000255643 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144686$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000255643 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129548$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000255643 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129477$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000255643 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000255643 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000255643 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000255643 980__ $$ajournal
000255643 980__ $$aVDB
000255643 980__ $$aI:(DE-Juel1)IBG-3-20101118
000255643 980__ $$aUNRESTRICTED