001     255643
005     20210129220513.0
024 7 _ |2 doi
|a 10.1007/s11104-015-2502-9
024 7 _ |2 WOS
|a WOS:000360644200009
037 _ _ |a FZJ-2015-05777
082 _ _ |a 570
100 1 _ |0 P:(DE-Juel1)144686
|a Huber, Katrin
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Simulating transpiration and leaf water relations in response to heterogeneous soil moisture and different stomatal control mechanisms
260 _ _ |a Dordrecht [u.a.]
|b Springer Science + Business Media B.V
|c 2015
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1442913958_334
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a AimsStomata can close to avoid cavitation under decreased soil water availability. This closure can be triggered by hydraulic (‘H’) and/or chemical signals (‘C’, ‘H + C’). By combining plant hydraulic relations with a model for stomatal conductance, including chemical signalling, our aim was to derive direct relations that link soil water availability, expressed as fraction of roots in dry soil (fdry), to transpiration reduction.MethodsWe used the mechanistic soil-root water flow model R-SWMS to verify this relation. Virtual split root experiments were simulated, comparing horizontal and vertical splits with varying fdry and different strengths of stomatal regulation by chemical and hydraulic signals.ResultsTranspiration reduction predicted by the direct relations was in good agreement with numerical simulations. For small enough potential transpiration and large enough root hydraulic conductivity and stomatal sensitivity to chemical signalling isohydric plant behaviour originates from H + C control whereas anisohydric behaviour emerges from C control. For C control the relation between transpiration reduction and fdry becomes independent of transpiration rate whereas H + C control results in stronger reduction for higher transpiration rates.ConclusionDirect relations that link effective soil water potential and leaf water potential can describe different stomatal control resulting in contrasting behaviour.
536 _ _ |0 G:(DE-HGF)POF3-255
|a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|c POF3-255
|f POF III
|x 0
700 1 _ |0 P:(DE-Juel1)129548
|a Vanderborght, Jan
|b 1
|u fzj
700 1 _ |0 P:(DE-Juel1)129477
|a Javaux, Mathieu
|b 2
|u fzj
700 1 _ |0 P:(DE-Juel1)129549
|a Vereecken, Harry
|b 3
|u fzj
773 _ _ |0 PERI:(DE-600)1478535-3
|a 10.1007/s11104-015-2502-9
|n 1-2
|p 109-126
|t Plant and soil
|v 394
|x 0032-079X
|y 2015
856 4 _ |u https://juser.fz-juelich.de/record/255643/files/art_10.1007_s11104-015-2502-9.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/255643/files/art_10.1007_s11104-015-2502-9.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/255643/files/art_10.1007_s11104-015-2502-9.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/255643/files/art_10.1007_s11104-015-2502-9.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/255643/files/art_10.1007_s11104-015-2502-9.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/255643/files/art_10.1007_s11104-015-2502-9.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:255643
|p VDB
|p VDB:Earth_Environment
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)144686
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129548
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129477
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129549
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-255
|1 G:(DE-HGF)POF3-250
|2 G:(DE-HGF)POF3-200
|a DE-HGF
|l Terrestrische Umwelt
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0430
|2 StatID
|a National-Konsortium
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b PLANT SOIL : 2014
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)1060
|2 StatID
|a DBCoverage
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21