001     255716
005     20210129220527.0
024 7 _ |a 10.1063/1.4930157
|2 doi
024 7 _ |a 0021-8979
|2 ISSN
024 7 _ |a 0148-6349
|2 ISSN
024 7 _ |a 1089-7550
|2 ISSN
024 7 _ |a WOS:000361636900015
|2 WOS
024 7 _ |a 2128/17055
|2 Handle
024 7 _ |a altmetric:3752052
|2 altmetric
037 _ _ |a FZJ-2015-05846
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Rukhadze, A. A.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Does the shock wave in a highly ionized non-isothermal plasma really exist?
260 _ _ |a Melville, NY
|c 2015
|b American Inst. of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1444051382_8727
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Here, we study the structure of a highly ionizing shock wave in a gas of high atmospheric pressure. We take into account the gas ionization when the gas temperature reaches few orders above ionization potential. It is shown that after gasdynamic temperature-raising shock and formation of a highly-ionized nonisothermal collisionless plasma Te≫Ti , only the solitary ion-sound wave (soliton) can propagate in this plasma. In such a wave, the charge separation occurs: electrons and ions form the double electric layer with the electric field. The shock wave form, its amplitude, and front width are derived.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Sadykova, Saltanat
|0 P:(DE-Juel1)162157
|b 1
700 1 _ |a Samkharadze, T. G.
|0 P:(DE-HGF)0
|b 2
773 _ _ |a 10.1063/1.4930157
|g Vol. 118, no. 10, p. 103305 -
|0 PERI:(DE-600)1476463-5
|n 10
|p 103305
|t Journal of applied physics
|v 118
|y 2015
|x 0021-8979
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/255716/files/1.4930157.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/255716/files/1.4930157.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/255716/files/1.4930157.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-700
|u https://juser.fz-juelich.de/record/255716/files/1.4930157.jpg?subformat=icon-700
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/255716/files/1.4930157.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:255716
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)162157
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J APPL PHYS : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21