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Kurzfassung 

Kurzfassung 

Moderne IGCC-Kraftwerke bieten hinsichtlich der vielseitig verwendbaren Brennstoffe 

und Produkte die größten Vorteile. Der Prozess verbindet dabei ein konventionelles 

GuD-Krafwerk mit einem Vergaserreaktor. Darüber hinaus kann dieser mit einer CO2-

Abscheidung und -Speicherung (CCS Carbon Capture Storage) gekoppelt werden. 

Diese Technologie ist ein vielversprechender Ansatz, die CO2-Emission durch fossile 

Energieträger zu reduzieren. Der Kern des IGCC-Kraftwerkes ist dabei der Vergaser, 

dieser bestimmt auch maßgeblich die Effektivität des Gesamtprozesses. Die 

anorganischen Bestandteile bilden auf den Reaktorwänden des Vergasers eine viskose 

Schlacke. Die verbleibenden anorganischen Komponenten werden in Form von 

Flugasche im Synthesegas mitgerissen. Die Viskosität der Schlacke spielt eine zentrale 

Rolle bei der Bestimmung der optimalen Betriebsbedingungen, viele Vorgänge sind 

direkt oder indirekt abhängig von dem Fließverhalten der Schlacke, wie die 

Tropfenhaftung (oder Partikelhaftung), der Schlackefluss und -abfluss, sowie die 

Degradierung der Refraktärmaterialien. Damit beeinflusst das Fließverhalten 

maßgeblich die Effizienz, Stabilität und Sicherheit des Vergasungsprozesses. Die 

Viskosität der Schlacke wurde ebenfalls als kritische Größe bei der Simulation durch 

numerische Strömungsmechanik (CFD) erkannt. Die meisten vorherigen Modelle bieten 

nur die Möglichkeit, die Viskosität in einem sehr eingeschränkten Bereich von 

Temperatur und Zusammensetzung zu beschreiben, da insbesondere eine effektive 

Beschreibung des Einflusses der inneren Struktur auf die Viskosität fehlte. 

Das Ziel dieser Arbeit war die Entwicklung eines neuen Modells zur Beschreibung der 

Viskosität vollständig geschmolzener Schlacken im newtonschen Bereich. In diesem 

neuen Modell wird die innere Struktur der Schlacke berücksichtigt, indem die Viskosität 

mit der Art und Verteilung einzelner Schlackenkomponenten, sowie der 

Wechselwirkung dieser Komponenten untereinander in Verbindung gebracht wird. Die 

Art der Komponente wird dabei durch die Gibbs-Energie bestimmt, die Verteilung dieser 

mit einer selbst-konsistenten thermodynamischen Datenbank berechnet. Für die 

Beschreibung der oxidischen Schlackesysteme wird ein modifiziertes Assoziatenmodell 

verwendet. Die Datenbank ermöglicht die Berechnung von Phasendiagrammen und 
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anderen thermodynamischen Eigenschaften in guter Übereinstimmung mit 

vorhandenen experimentellen Daten. Der Einfluss von Temperatur und 

Zusammensetzung auf die Struktur vollständig geschmolzener Schlacke wird mit 

monomeren Assoziaten in Verbindung mit der selbst- und der interpolymerisation 

beschrieben. 

Das neue Viskositätsmodell wurde für vollständig geschmolzene Schlacken in dem 

System SiO2–Al2O3–CaO–MgO–Na2O–K2O–FeO–Fe2O3 und deren Subsysteme, 

basierend auf dem thermodynamisch modifizierten Assoziatenmodell, entwickelt. Das 

Modell erlaubt eine verlässliche Vorhersage der Viskosität über alle genannten 

Komponenten sowie einen großen Temperaturbereich mit nur einem Satz an 

Modellparametern. Diese besitzen zusätzlich eine eindeutige physikochemische 

Bedeutung. Mit dem neuen Modell kann der Lubricant-Effekt in SiO2-basierten binären 

Systemen beschrieben werden. Die Änderung der Viskosität durch den Austausch 

eines Netzwerkwandlers durch einen anderen bei konstantem SiO2-Gehalt wird 

ebenfalls gut beschrieben. Auch das durch Al2O3 bewirkte Viskositätsmaximum kann 

das Modell beschreiben, so kann sowohl die Konzentration als auch die Viskosität des 

Maximums in Abhängigkeit von Temperatur und Zusammensetzung 

(Ladungsausgleichseffekt) vorhergesagt werden. Desweiteren kann ebenfalls das 

Viskositätsmaximum beim Austausch von Al2O3 durch SiO2 bei ansonsten konstanter 

Konzentration der Netzwerkwandler dargestellt werden. Der Fe2O3 induzierte 

Ladungsausgleichseffekt ist weniger stark ausgeprägt als bei Al2O3. Das durch Fe2O3 

bewirkte Viskositätsmaximum zeigt dabei eine starke Abhängigkeit vom 

Ladungsausgleich von Fe3+. Wird Fe2O3 durch SiO2 bei ansonsten gleicher 

Zusammensetzung ersetzt, ist es möglich, dass das Viskositätsmaximum nicht mehr 

vorhanden ist. 

Zusätzlich wurde ein Rotationsviskosimeter zur Validierung des entwickelten 

Viskositätsmodells genutzt. Die Viskosität mehrerer realer Kohleaschen wurde hierfür 

gemessen. Des weiteren werden Beispiele für die praktische Anwendung des Modells 

gegeben. 
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Abstract 

Flexibility in feedstocks and products is one of the most important advantages of an 

IGCC power plant based on entrained-flow gasifiers. Moreover, it can be combined with 

the carbon capture and storage (CCS), which is a promising solution to control the CO2 

emissions produced from the use of fossil fuels such as coal. The core of an IGCC 

power plant is the slagging gasifier, whose performance is significant for an IGCC 

power plant. In slagging gasifiers, the majority of the inorganic components are 

converted to a liquid slag flowing down the wall of the gasifier, whereas the remaining 

inorganic components entrained in the syngas form fly ash. Slag viscosity plays a very 

important role in determining the optimum operating conditions for slagging gasification, 

in which many processes are related to the viscosity, such as the particle sticking (or 

droplet sticking), slag flow, slag tapping, and refractory degradation that may lead to 

concerns about efficiency, process reliability, and safety. Slag viscosity is also identified 

as a critical property for simulations based on computational fluid dynamics (CFD). 

However, most of the early viscosity models are only capable of describing the viscosity 

over a limited range of temperatures and compositions, due to the lack of an effective 

description about the structural dependence of viscosity. 

This study aims at developing a new viscosity model for fully liquid slag systems in the 

Newtonian range. In the new viscosity model, the structure of slag is effectively taken 

into account, in which the viscosity is linked to the type and distribution of species, as 

well as the connectivity of species. The type of species is determined from the Gibbs 

energy, and thereby the distribution of species is calculated by using a completely self-

consistent thermodynamic dataset, where the modified associate species model was 

applied for the slag. This dataset provides the phase diagram and other thermodynamic 

properties to be calculated in good agreement with the experimental data. In 

consequence, both the temperature- and composition-induced structural changes of 

molten fuel slags can be described with a set of monomeric associate species in 

combination with the critical clusters induced by the self- and inter-polymerizations. 
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The new viscosity model has been developed for fully liquid slag system SiO2–Al2O3–

CaO–MgO–Na2O–K2O–FeO–Fe2O3 and its subsystems in the Newtonian range, based 

on the thermodynamic modified associate species model. The model gives a reliable 

prediction over the whole range of compositions and a broad range of temperatures 

using only one set of model parameters, which all have a clear physico-chemical 

meaning. With the new model, one of the challenges of the viscosity behavior in SiO2-

based binary systems, the so called lubricant effect, can be excellently described. The 

viscosity behavior when substituting one network modifier for another at constant SiO2 

contents is well described. The Al2O3-induced viscosity maximum is also well described, 

in which the position and magnitude of the viscosity maximum as a function of 

composition and temperature (charge compensation effect) are properly predicted. 

Another viscosity maximum when replacing Al2O3 with SiO2 for constant contents of the 

network modifiers is presented. The Fe2O3-induced charge compensation effect is less 

pronounced than that induced by Al2O3. It was found that the Fe2O3-induced viscosity 

maximum does not always occur depending on the charge compensators for Fe3+. The 

viscosity maximum when replacing Fe2O3 with SiO2 for constant contents of the other 

network modifiers might not occur. 

In addition, a rotational viscometer is employed to validate the current viscosity model. 

Viscosities of several real coal ashes were measured by this rotational method. 

Moreover, examples of the application of the current model in determining coal ash 

fluxing and blending are presented. 
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1 Introduction 

Coal is the world’s most abundant and widely distributed fossil fuel, which maintains 

around 41% of the power generation in the world. Despite a strong development of 

renewables such as solar, wind, and geothermal energies, coal will continue to play an 

essential role in power generation for the foreseeable future. The utilization of coal, 

however, causes a remarkable increase in carbon dioxide emissions, which has a 

significant contribution to the global warming. Reducing carbon dioxide emissions 

requires technologies that allow a cleaner and more efficient utilization of coal. Coal-

fired power plants using integrated gasification combined cycle (IGCC) technology in 

combination with carbon capture are identified as a promising solution to achieve these 

goals [1], as shown in Fig. 1.1. 

 

Fig. 1.1. Schematic diagram of an IGCC power plant with carbon capture [2] 

The core of an IGCC power plant is the gasifier, whose performance is significant for 

the IGCC power plant. Many types of gasifiers have been developed so far, for instance, 

moving-bed, fluid-bed, and entrained-flow gasifiers. However, the majority of the 
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successful coal gasification processes developed after 1950 are performed by 

entrained-flow slagging gasifiers, which are operated at temperatures above 1400oC 

and pressures ranging from 2 MPa to 7 MPa [3]. As an example, the GE Energy gasifier 

(see Fig. 1.2) is currently employed by 64 plants, and moreover 6 more plants are in 

planning [2]. 

 

Fig. 1.2. Presentation of GE Energy Gasifier [2] 

In slagging gasifiers, the organic components in coal particles are converted to syngas, 

which is used for electricity generation. The majority of the inorganic components are 

converted to a liquid slag flowing down the wall of the gasifier, whereas the remaining 

inorganic components entrained in the syngas form fly ash. Slag viscosity plays a very 

important role in determining the optimum operating conditions for slagging gasification, 

in which many processes such as the particle sticking (or droplet sticking), slag flow, 

slag tapping, and refractory degradation are related to the viscosity [4]. Slag viscosity is 
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strongly dependent on composition and temperature. When the operating temperature 

is optimized for the syngas production, blended coals or fluxing agents are often used to 

make the slag viscosity low enough for efficient slag flow and taping [5, 6]. For smooth 

slag flow and tapping, the maximum slag viscosity is 25 Pa•s [7]. On the other hand, an 

increased viscosity is required to decrease the corrosion rate to protect the refractory 

material of the gasifier [8]. Moreover, the viscosity is an important factor in designing the 

slagging gasifiers [9]. 

Although extensive measurements of slag viscosities have been made so far, it is 

impossible to give all data for the range of compositions and temperatures encountered 

in practice. In addition, measuring viscosity is not only time consuming but also 

expensive. To solve this problem, modelling of viscosities is a proper and promising 

approach. A number of viscosity models such as the Arrhenius model [10], the 

Weymann-Frenkel model [11], the Lakatos model [12], the Urbain model [13], the 

Riboud model [14], and the Reddy model [15] have been developed for several past 

decades. Most of the early models, however, involve a longstanding problem that they 

are only capable of describing the viscosity over a limited range of compositions and 

temperatures, due to the lack of an effective description about the structural 

dependence of viscosity. Thus, a reliable, accurate, and general model is required to 

describe the viscosity over the whole range of compositions and a broad range of 

temperatures for proper selection of operating temperature, blended coals, and fluxing 

agents. Moreover, a proper viscosity model should be implemented for simulations 

based on computational fluid dynamics (CFD) [16]. 

This study aims at developing a new structure based viscosity model in the Newtonian 

range, which can describe viscosities of liquid melts for the system SiO2–Al2O3–CaO–

MgO–Na2O–K2O–FeO–Fe2O3 and its subsystems relevant to fuel slags. The model 

should be applicable in the whole range of compositions and a broad range of 

temperatures encountered in slagging gasification, which requires an effective 

description about the structure of the slag. In the current model the viscosity is linked to 

the type and distribution of species, as well as the connectivity of species. The type of 

species is determined from the Gibbs energy, and thereby the distribution of species is 
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calculated by using a completely self-consistent thermodynamic dataset, where the 

modified associate species model was applied for the slag. It is assumed that both the 

temperature- and composition-induced structural changes of molten fuel slags can be 

described with a set of monomeric associate species in combination with the critical 

clusters induced by the self- and inter-polymerizations. More than 7700 experimental 

data points are used to assess the model parameters. 

In addition, a rotational viscometer is employed to measure the viscosity, which is used 

for validation of the current model. Viscosities of several real coal ashes were measured 

by this rotational method. Moreover, examples of the application of the current model in 

determining coal ash fluxing and blending are presented. 
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2 Literature review 

2.1 Fundamentals of rheological properties 

2.1.1 Definition of viscosity 

Viscosity can be considered as an internal fluid friction, which can transform kinetic 

energy of macroscopic motion into heat energy like the friction between moving solids. 

There is no such friction in a liquid as static friction between two solids. However, there 

is, instead, dynamic friction due to the random motion of species (i.e. atoms, molecules, 

or ions) in a liquid. The causes of viscosity, essentially, are the transfer of momentum 

between species and the inter-species forces between species of the liquid. 

In terms of the quantitative description of viscosity, Newton conducted a simple 

experiment in which the fluid is sandwiched between two suspending parallel horizontal 

plates in a liquid. The viscosity is described as the shear stress that suppresses the 

movement of these two suspending parallel horizontal plates, which is illustrated in Fig. 
2.1. 

 

Fig. 2.1. Visualized concept of viscosity [17] 

The lower plate is fixed while the upper plate is pulled slowly at a constant speed. After 

a steady state is reached, the fluid can be imaged to be composed of many layers like a 

pile of printer paper, where each sheet moves a little faster than the sheet below it. In 

other words, the fluid between the plates flows in lamina and its speed distribution is 

linear, which is proportional to the distance from the lower plate. 
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As Fig. 2.1 presents, the viscosity can be calculated with [18] 

τ =
F
A

= η ⋅
v
ℓ

                                                                                                                                       (2.1) 

where: τ is the shear stress; F is the force required to move the upper plate; A is the 

area of the plate; η is the viscosity; v is the speed of plate; ℓ is the distance between the 

plates. This equation was verified by Poiseuille in 1849, based on the experiment of 

liquid flow in tubes. 

The SI unit of the viscosity is Pa•s, which is used in this thesis. It is necessary to point 

out another unit, poise (P), named after Poiseuille, which is usually applied in industry. 

The relation between P and Pa•s is shown in Eq. (2.2). 

1 Pa•s=10 P                 (2.2) 

To get a rough picture of the degree of viscosities, viscosities of some common 

substances are shown in Table 2.1. Moreover, the viscosity studied in this thesis is 

always dynamic viscosity, although there is another term, kinetic viscosity, which is 

used to describe the ability of the fluid to transport momentum, and it is defined as the 

ratio of dynamic viscosity to density. 

Table 2.1. Approximate viscosities for some common substances at room temperature 
[19] 

Material log η (Pa•s) 

Ideal fluid –∞ 
Water –3 
Machine oil –1 
Heavy oil 0 
Glycerol 1 
Solid glass >18 
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2.1.2 Rheological behavior 

Viscosity is strongly related to the rheological behavior of a liquid. There is no general 

model to calculate the viscosity for all types of rheological behaviors [20], which is 

extremely complicated. The evaluation of flow type is required to develop a new 

viscosity model. According to the relationship between shear rate and viscosity, the fluid 

is classified as two categories: Newtonian fluid and non-Newtonian fluid. 

2.1.2.1 Newtonian fluid 

The Newtonian fluid behavior is characterized by a linear relationship between the 

applied shear stress and shear rate [21]. That is, the viscosity remains constant as the 

change in shear rate occurs for the Newtonian fluid, which is illustrated in Fig. 2.2. 

  

(a) Shear stress over shear rate (b) Shear rate over viscosity 
Fig. 2.2. Qualitative flow curves for Newtonian fluid 

In 2010, Chhabra gave a more complete definition where a Newtonian fluid should 

satisfy the complete Navier-Stokes equations rather than simply present a constant 

viscosity at varying shear rates [22]. The present viscosity modelling is subjected to the 

Newtonian fluid. 
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2.1.2.2 Non-Newtonian fluid 

For non-Newtonian fluid behavior, the viscosity is dependent on the shear rate. The 

relationship between the shear stress and shear rate is no longer linear for non-

Newtonian fluid [21]. There are several types of non-Newtonian fluid, which can be 

further classified as a time-dependent fluid and a time-independent fluid. 

For the time-independent fluid, as the name implies, the fluid behavior is independent 

on time. The common types of this fluid are shown in Fig. 2.3. 

 

Fig. 2.3. Qualitative flow curves for varying non-Newtonian fluids [22] 

A pseudoplastic fluid, which is perhaps the most common non-Newtonian fluid, is 

characterized by the phenomena that viscosity decreases with increasing shear rate. It 

is encountered in many types of fluids, such as emulsions and dispersions. Conversely, 

a dilatant fluid displays increasing viscosity with increasing shear rate, as presented in 

Fig. 2.3. It can be observed in concentrated suspensions like a mixture of water and 

silver sand. 

A bingham plastic fluid, as shown in Fig. 2.3, behaves like a solid at low shear stress 

but behaves like Newtonian fluid at high shear stress, where the critical shear stress is 
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called yield stress and the slope of line is called plastic viscosity. In contrast, a 

viscoplastic fluid, which is also characterized by the existence of a yield stress, reveals 

a decrease in plastic viscosity as the shear rate increases. 

Some non-Newtonian fluids show a change in viscosity with time at constant shear rate. 

According to the behavior of shear stress-shear rate over duration of shearing, time-

dependent fluids are described as two types, i.e. a thixotropic fluid and a rheopectic fluid, 

as presented in Fig. 2.4. 

 

Fig. 2.4. Qualitative flow curves for thixotropic and rheopectic fluids [22] 

Thixotropic fluids, such as paints and clays, present a decrease in viscosity with time at 

constant shear rate but show a recovery of the viscosity once the shear load is removed 

[23], as shown in Fig. 2.4. Rheopectic fluids, which are rarely encountered compared to 

thixotropic fluids, display the opposite phenomenon that viscosity increases over the 

duration of shearing. In addition, it is not uncommon that both thixotropic and rheopectic 

behaviors can be observed in the same liquid under appropriate conditions [22]. 
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2.2 Structure of slag 

When it comes to the viscosity of slag, the structure of slag is inevitable to be 

considered due to the essential dependence of the viscosity on structure. Slag can be 

treated as the mixture of oxides, such as SiO2, Al2O3, CaO, MgO, Na2O, K2O, FeO, and 

Fe2O3, with ignoring the slight amount of sulphides as well as phosphides. The structure 

of each pure oxide is related to the radius ratio of cation and anion. According to the 

specific effects of oxides on the slag structure, they are categorized as three groups, i.e. 

network formers (e.g. SiO2), network modifiers (e.g. CaO, MgO, Na2O, K2O, and FeO) 

and amphoterics (e.g. Al2O3 and Fe2O3). 

 

Fig. 2.5. Schematic of silica structure [24] 

In the 1930s, the silicate structure was extensively investigated by Zachariasen [25] and 

Warren and Biscoe [26], who found three rules for describing the atomic arrangement in 





Literature review 

12 

However, the covalent bond of oxygen and silicon can be broken by addition of network 

modifiers. In 1938, the modification of silica network structure was postulated by Warren 

and Biscoe based on the study of sodium silicate glass, which is presented in Fig. 2.6. It 

is seen that the oxygen ions are not always bonded to two silicon ions, and sodium ions 

are presented in various holes in the irregular network structure. In 1985, Greaves 

further investigated the effect of the network modifiers on the structure of glass. Then, 

he proposed modified random network structure, as shown in Fig. 2.7. 

 
 [Si3O9]6– [Si4O12]8– 

 
 [Si6O15]6– [Si8O20]8– 

 
[Si9O21]6–  

Fig. 2.8. Proposed atomic arrangement of discrete silicon-oxide units in liquid silicates 
[28] 
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In 1955, Bockris et al. put forward the discrete silicon-oxide units in liquid silicates after 

collapse of silica network structure, as shown in Fig. 2.8. These proposed discrete units 

are capable of describing changes in molar volume as well as the activation energy for 

viscous flow over composition [28]. 

Based on empirical observations, Zachariasen also found that network formers usually 

involve four features [25]. No oxygen ions may be bonded to more than two cations; the 

cation coordination number is small (3 or 4); oxygen polyhedral share corners rather 

than edges or faces; at least three corners must be shared for 3-dimensional network 

structure. The alkali oxides and alkaline earth oxides are considered as network 

modifiers based on the features of network formers. Each alkali ion results in one break 

of covalent bonds while each alkaline earth ion leads to two breaks of covalent bonds, 

as Fig. 2.9 illustrates. 

 
(a) 

 
(b) 

Fig. 2.9. Loosening of the silica network structure by addition of alkali oxides and 
alkaline earth oxides 

According to the principles shown in Fig. 2.9, addition of the network modifiers, such as 

alkali oxides and alkaline earth oxides, to pure silica will cause a sharp decrease in 

viscosity. 

In terms of amphoterics like Al2O3, as the name itself implies, they behave as either 

network formers or network modifiers depending on the composition of the silicate melts. 

For example, the viscosity decreases with increasing content of Al2O3 in the binary 
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system SiO2–Al2O3 in which Al2O3 acts as a network modifier. For the binary system 

Al2O3–CaO, however, it can behave as a network former as shown in Fig. 2.10, where 

Al3+ is charge-compensated by Ca2+ and results in a viscosity maximum which here is 

also called charge compensation effect. 

 

Fig. 2.10. Presentation of atomic arrangement of the system Al2O3–CaO at 0.375 mole 
fraction Al2O3 and 0.625 mole fraction CaO [29] 

In ternary systems such as SiO2–Al2O3–MO/R2O, the Al2O3-induced viscosity behavior 

is complicated depending on relative concentrations of each component [30]. As Fig. 
2.11 presents, different charge compensators lead to different structural changes. 

 
(a) alkali oxides R2O as charge compensators for Al2O3 

 
(b) alkaline earth oxides MO as charge compensators for Al2O3 

Fig. 2.11. The behavior of Al2O3 as a network former in the systems SiO2–Al2O3–
MO/R2O 
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2.3 Previous viscosity models 

Many efforts have been made to develop various models for the prediction of viscosity 

in past decades. Most of them are only applicable in a special range of compositions or 

temperatures. Some common previous models are listed in Table 2.2, and described in 

detail as follows. 

Table 2.2. Previous viscosity models presented in this section 

Single phase slag systems 

Multiphase 
slag systems Temperature-related 

models 

Temperature & Composition-related 
models 

Non-structure 
based models 

Structure based 
models 

Arrhenius model Shaw model 
Zhang-Jahanshahi 
model Einstein model 

Vogel-Fulcher-
Tammann model Lakatos model Reddy model Roscoe model 

Adam-Gibbs model Urbain model Iida model  

Eyring model Riboud model KTH model  

Weymann-Frenkel 
model 

Kalmanovitch-Frank 
model Avramov model  

Bockris-Reddy model Hurst model Quasi-chemical 
viscosity model 

 

AM model Kondratiev-Jak 
model FactSage model  

 

2.3.1 Single phase slag systems 

This section focuses on describing the viscosity models for fully liquid systems where 

rheological behavior is constrained within the Newtonian fluid. In an earlier stage, the 

temperature dependence of viscosity was widely investigated and many temperature-

related models were developed. Considering the temperature dependence only, was 

not sufficient and therefore the effect of the composition on viscosity was coupled to the 
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viscosity models. Due to the fact that the structure plays an essential role in viscosity, 

structure based models were adopted to describe the viscosity, later on. 

2.3.1.1 Temperature-related models 

Extensive efforts on temperature dependence of viscosity have been made since the 

end of 19th century [20]. What is well known at present are the Arrhenius model, the 

Vogel-Fulcher-Tammann model, the Adam-Gibbs model, the Eyring model, the 

Weymann-Frenkel model, the Bockris-Reddy model, and the AM model. 

Arrhenius model 

This model is a widely known approach, which is often employed to describe the 

temperature dependence of viscosity for silicate melts. At the end of the 19th century, an 

internal friction of dilute aqueous solutions was investigated by Arrhenius [10]. He found 

that the internal friction (viscosity) exhibits a temperature-dependent behavior and 

obeys Eq. (2.3). 

ln η = A +
B
T

                                                                                                                                        (2.3) 

where: η is the viscosity; A and B are composition-dependent constants; T is the 

absolute temperature in K. 

As the definition of viscosity says, viscous flow can be described as relative movements 

of the structural units of the liquid in the view of molecular scale. Based on the Eyring 

absolute rate theory [31], the precondition for the displacement of structural units is to 

overcome the potential energy barriers, which are dependent on composition. Then, a 

more complicated form of the Arrhenius model was derived as follows [32]. 

ln η = Aa +
Ea

R ∙ T
                                                                                                                                (2.4) 

where: Aa and Ea are composition-dependent constants; R is the gas constant. 
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There are many arguments in terms of the constants A and B. The relationship between 

ln η  and 1/T is usually nonlinear. In 1986, Richet observed that the constant B is 

dependent on temperature [33]. Afterwards, Wang and Porter characterized the 

constant B as a temperature and composition-related parameter for polymer systems in 

1995 [34]. 

Vogel-Fulcher-Tammann model 

This model was independently put forward by Vogel [35], Fulcher [36], and Tammann 

and Hesse [37]. Compared to the Arrhenius model, it introduces another constant 

parameter C besides the constants A and B, which is expressed as 

ln η = A +
B

T − C
                                                                                                                                (2.5) 

where: A, B, and C are composition-dependent constants. 

It is suitable to demonstrate the dependence of viscosity on temperature for silicate 

melts. In 1985, Urbain found that the Vogel-Fulcher-Tammann model shows a good 

agreement between experimental data and calculated results for fully liquid silicates, 

supercooled liquids, and glasses [38]. This model is also employed by Gan and Lai to 

describe the temperature dependence of viscosity for molten blast furnace slag and 

gives a good performance [39]. However, Mauro et al. stated that the Vogel-Fulcher-

Tammann model exhibits systematic error when extrapolating to low temperatures [40]. 

Adam-Gibbs model 

In 1965, another model, i.e. the Adam-Gibbs model, whose appearance is similar to the 

Arrhenius model, was developed by generalizing and extending the previous work of 

Gibbs and Dimarzio who applied the configurational entropy theory to explain the 

relaxational properties of glass-forming liquids [32, 41]. Adam and Gibbs stated that 

viscous flow of a liquid system occurs by the cooperative rearrangements of the varying 

species (atoms, ions, and molecules) in the liquid. The average probability for the 

structural rearrangements was derived by Adam and Gibbs and is given by 
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P(T) = Ap ∙ exp �
−Bp

T ∙ Sc(T)�                                                                                                            (2.6) 

where: P(T) is the average probability for the structural rearrangement; Ap and Bp are 

composition-dependent constants; T is the absolute temperature in K; Sc(T) is the 

configurational entropy. 

On the other hand, the average probability is inversely proportional to the structural 

relaxation time, which can be thought to be controlled by the probability of 

configurational variations in microscopic volumes. In the 1980s, Richet and his 

coworkers investigated the viscosity of silicate melts, and proposed that the structural 

relaxation time could be employed to indicate the shear strain relaxation time [33, 42]. 

Thus, a general Adam-Gibbs viscosity model was achieved and is given by 

log η = A +
B

T ∙ Sc(T)
                                                                                                                        (2.7) 

where: A and B are composition dependent constants. The configurational entropy SC(T) 

represents a measure of the dynamical states allowed to rearrange to new 

configurations [42], which can be calculated with 

Sc(T) = Sc(Tref) + �
∆Cp

T
dt

T

Tref
                                                                                                       (2.8) 

where: Tref is a reference temperature and ∆Cp  is the configurational heat capacity, 

which is given by [33] 

∆Cp = Cp,liq − Cp,glass                                                                                                                        (2.9) 

where: Cp,liq and Cp,glass  are the heat capacity in liquid and glassy phase states, 

respectively. 

This viscosity model could give a basis for a semi-theoretical model which is used to 

calculate the viscosity of molten silicates [32]. The temperature dependence of viscosity 

is well described in the range from 1 Pa•s to 1012. 
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Eyring model 

On the basis of the absolute reaction rate theory [31], this model was derived by Eyring 

in 1941. He linked the absolute reaction rate theory with the viscosity in the molecular 

scale. A chemical reaction does not occur until the participating atoms or molecules 

come together to form the activated complex. That means that energy barriers must be 

overcome before the chemical reaction occurs. To describe the distribution of energy, 

the Maxwell-Boltzmann equation was employed. 

Besides the activation energy, the chemical reaction always involves a change in the 

equilibrium distance between atoms or molecules. In the view of molecular scale, 

viscous flow can also be described as relative movements of two layers of molecules in 

the liquids. According to the same principles, the Eyring model revealing temperature 

dependence of viscosity is given by [43] 

η =
hN
Vm

∙ exp �
∆G∗

RT
� =

hNρ
M

∙ exp �
∆G∗

RT
�                                                                                           (2.10) 

where: h is the Planck’s constant; N is the Avogadro’s number; Vm is the molar volume; 

∆G∗ is the Gibbs energy of activation of viscous flow; R is the gas constant; T is the 

absolute temperature; ρ is the density and M is the molecular weight. The Eyring model 

can be transformed into an Arrhenius-like model, but they are theoretically different. 

Weymann-Frenkel model 

This model was developed in 1962, based on the hole theory [44, 45], and the liquid 

was assumed to be a quasi-crystalline structure. As the hole theory says, the properties 

of a liquid are determined by the motion of the holes just as the motion of molecules 

determines the properties of a gas. For the liquid matter in this model, the molecule can 

move from one equilibrium position to the next equilibrium position which is empty when 

it has adequate energy to overcome the potential barriers. On the basis of this liquid 

structure, the mechanical and statistical concepts were employed by Weymann to 

deduce the mechanism of viscosity, which is given by [11] 
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η = �
RT
EW

�
1
2
∙

(2mkT)
1
2

ν
2
3 ∙ PV

∙ exp �
EW
kT
�                                                                                                     (2.11) 

where: R is the gas constant; T is the absolute temperature; EW is the energy well; m 

and v are the mass and volume of the structural unit; k is the Boltzmann constant; PV is 

the ‘hole’ probability connected with the structural model of the liquid. It should be 

pointed out that Eq. (2.11) is invalid without the following assumptions [11]. The 

direction of the shear stress is constrained to be in the gliding plane. Only the linear 

model, in which essentially one row of molecules moves through the potential field of a 

second row of molecules, is investigated. The transition probability is dependent on the 

number and the arrangement of the holes which are described by the S-distribution in a 

liquid in shear motion and the R-distribution in a liquid at rest. 

The Weymann-Frenkel model can be simplified in the form of the following equation. 

log η = log A + log T +  
B
T

                                                                                                                 (2.12) 

Compared to the Arrhenius model, an extra absolute temperature term is introduced. It 

is suitable to present the temperature dependence of silicate melt viscosities. 

Furthermore, in the case of high-temperature viscosity measurements for standard 

reference materials, Mills found that the Weymann-Frenkel model gives the best fit for 

the temperature dependence of most glasses and slags [46]. 

Bockris-Reddy model 

This viscosity model based on the hole theory was deduced by Bockris and Reddy [47]. 

In this model, a fluid in motion is assumed to be moving layers of fluid in the direction 

parallel to liquid layers. According to the hole theory, the viscous forces are thought to 

occur due to the momentum transfer between moving fluid layers when holes jump from 

one layer to another, as shown in Fig. 2.12. 
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Fig. 2.12. Viscous forces are proposed to arise from momentum transfer between 
moving fluid layers when particles jump from one layer to another [47] 

The viscous drag also arises during the similar momentum transfer. Thus, the Bockris-

Reddy model is given by 

η =
2
3

nh〈rh〉 ∙ (2πmkT)
1
2 ∙ exp (

E
RT

)                                                                                                 (2.13) 

where: nh is the number of holes per unit volume; 〈rh〉 is the average radius of the holes; 

m  is the mass of the ionic unit; k  is the Boltzmann constant; T is the absolute 

temperature; E is the energy of ionic unit for viscous flow; R is the gas constant. This 

model has been applied to multicomponent slags. 

AM model 

In 1983, Milchev and Avramov [48] found that the dispersion around the mean energy 

barrier for diffusion in amorphous media can lead to a considerable change in the 

coefficient of atomic diffusion, which was inspired by the previous investigation of 

activated complex theory in bulk viscosity of liquids [49]. Followed by the study of 

influence of disorder on viscosity in condensed systems [50] as well as undercooled 

melts [51], the AM model was developed by relating the viscosity to the thermally 

activated jumping process. The viscosity was assumed to be inversely proportional to 

the average jump frequency of the building units of the system, where the specific jump 

does not occur until the corresponding activation energy is overcome. 
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The probability of appearance of energy barrier is introduced to calculate the average 

jump frequency, which is expressed as follows. 

〈ν〉 = �νi ∙ pi(Ei)
∞

i=0

                                                                                                                               (2.14) 

where: 〈ν〉 is the average jump frequency; νi is the molecule jump frequency; pi(Ei) is 

the probability distribution function (Possion probability distribution used here). The 

solution for Eq. (2.14) was obtained by employing the dispersity of the activation energy 

and the activation energy value at the maximum of probability. Then, Avramov and 

Milchev linked the dispersity to the entropy. Thus, the viscosity model was derived. 

η = η∞ exp �
θ
T
�
α

                                                                                                                                  (2.15) 

where: η∞ is the constant; T is the absolute temperature; θ is a parameter in Kelvin; α is 

dimensionless parameter. 

Summary 

As mentioned above, the mechanism of viscosity in the molecular scale has been 

discussed and thereby the models concerning the temperature dependence of viscosity 

has been derived. These models are mainly applied in simple liquids. They could not 

give a good performance for more complicated liquids such as aluminosilicate melts. 

Nevertheless, the extensive studies on relationship between viscosity and temperature 

provide a reasonable framework for the further development of viscosity models of 

multicomponent systems. 

2.3.1.2 Composition- and temperature-related models 

Only considering the temperature dependence of viscosity is apparently not adequate 

due to the fact that viscosity is also a composition dependent variable. Over the past 

decades, a number of composition- and temperature-related models, such as the Shaw 

model, the Lakatos model, the Urbain model, the Iida model, the KTH model, and the 
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Avramov model have been developed so far. According to the treatment of composition 

of slag, these models are classified into two types, i.e. non-structure based models and 

structure based models. To avoid redundancy, the temperature dependence of viscosity 

will just be briefly referred to in the description of the following models. 

2.3.1.2.1 Non-structure based models 

The models of this kind only consider the influence of the bulk composition rather than 

the influence of the composition-related structure on the viscosity, and therefore they 

are treated as non-structure based models, such as the Shaw model, the Lakatos 

model, the Urbain model, the Riboud model, the Kalmanovitch-Frank model, the Hurst 

model, and the Kondratiev-Jak model. The introduction of the bulk composition probably 

increases the level of performance of viscosity models. A brief review is performed as 

follows. 

Shaw model 

Based on the Arrhenius-type temperature dependence of viscosity, an empirical model 

to calculate the viscosity was put forward by Shaw in 1972 [52]. He reviewed the 

Arrhenius mixture rule used by Bottinga and Weill [53], with which the viscosity of a 

Newtonian fluid can be described as the sum of each contribution ηi, based on the 

assumption that the silicate melts consist of varying liquid oxides. 

ln η(T) = �Xi ∙ ln ηi
i

= �Xi ∙ (Ai +
Bi

T
)

i

                                                                                    (2.16) 

where: Xi  is the mole fraction of oxide component i; Ai  and Bi  are experimental 

constants of oxide component i. 

However, this equation is largely insufficient to describe the viscosity over the entire 

range of compositions. Then, Shaw turned to investigate additivity relations for the 

constants A and B in the Arrhenius equation. He attempted to fit the viscosity data for 

rock compositions by methods of multiple regression analysis. It was found that it is 

much easier to estimate viscosities of multicomponent anhydrous silicate liquids without 
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the use of extensive tables in the model of Bottinga and Weill [53]. To develop the Shaw 

model, an assumption was introduced that the viscosity curve of multicomponent silicate 

liquids intersects the reference curve of a pure silica melt in an invariant point. Based on 

this assumption, the viscosity is given by 

log η = α ∙
104

T
− cT ∙ α + cη                                                                                                             (2.17) 

where: α is the characteristic slope; T is the absolute temperature; cT and cη are the 

coordinates of the invariable point. The characteristic slope is expressed as Eq. (2.18). 

α =
XSiO2 ∙ ∑(Xi ∙ αi0)

1 − XSiO2
                                                                                                                          (2.18) 

where: XSiO2 is the mole fraction of SiO2; Xi is the mole fraction of other components; αi0 

is a constant. 

In terms of performance of this model, Shaw stated that large negative deviation may 

occur when reproducing experimental data at viscosities above approximately 107 Pa•s. 

Another shortcoming is that the predictions inevitably fail for melts which are exposed to 

any thermal or compositional gradients. 

Lakatos model 

By using the Vogel-Fulcher-Tammann type temperature dependence of viscosity, the 

Lakatos model [12] was developed by incorporating the influence of composition on 

viscosity into the three constants A, B, and C of the Vogel-Fulcher-Tammann model. To 

develop this model, the viscosity-temperature relations were built up for 30 different 

compositions in the system SiO2–Al2O3–Na2O–K2O–CaO–MgO. The composition range 

is shown in Table 2.3. The Lakatos model was optimized by minimization of 

temperature deviations, and is given by 

log η = A +
B

T − C
                                                                                                                                (2.19) 
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where: A, B, and C are composition-dependent constants, which are calculated from the 

following relations. 

A = 1.5183 XAl2O3 − 1.6030 XCaO − 5.4936 XMgO + 1.4788 XNa2O − 0.8350 XK2O − 2.4550 

B = 2253.4 XAl2O3 − 3919.3 XCaO + 6285.3 XMgO − 6039.7 XNa2O − 1439.6 XK2O + 5736.4 

C = 294.4 XAl2O3 + 544.3 XCaO − 384.0 XMgO − 25.07 XNa2O − 321.0 XK2O + 471.3 

It was found that the viscosity can be calculated by this model with good accuracy 

(standard deviation ~3.0oC) if compositions are calculated on a molecular basis. The 

influences of constituents on viscosity are linearly dependent on the molecular contents 

and additives. The interaction between the constituents could be ignored. Although this 

model involves large deviations at high temperature, it is often used due to its simplicity. 

Table 2.3. The composition range used for the development of the Lakatos model 

Components Mole fraction range 
SiO2 0.61–0.77 
Al2O3 0.00–0.05 
CaO 0.09–0.14 
MgO 0.00–0.10 
Na2O 0.10–0.15 
K2O 0.00–0.06 

 

Urbain model 

By employing the Weymann-Frenkel model to describe the temperature dependence of 

viscosity, a model for calculating the viscosity of silicate and aluminosilicate melts was 

put forward by Urbain et al. in 1981 [54], in the form of a simplified Weymann-Frenkel 

model. 

η = A ∙ T ∙ exp �
1000 ∙ B

T
�                                                                                                                    (2.20) 
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where: T is the absolute temperature; A and B are composition-dependent constants. 

Compared to the original Weymann-Frenkel model, constants A and B are obtained as 

follows. 

A = �
R

EW
�
1
2
∙

(2mk)
1
2

(1
ν)

2
3 ∙ Pv

                                                                                                                            (2.21) 

B =
EW

1000 ∙ k
                                                                                                                                           (2.22) 

After further derivation, the relationship between A and B is given by 

lnA = −(m ∙ B + n)                                                                                                                               (2.23) 

where: m and n are model parameters, optimized based on the study of about 60 

different compositions in the ternary systems SiO2–Al2O3–MO and SiO2–Al2O3–R2O, 

where MO and R2O represent the bi- and mono-valent oxides, respectively. Urbain 

found that the m and n values are close to each other for similar liquids, although each 

liquid has a specific m and n value [20]. For ionic liquids, such as oxides, silicates, and 

aluminosilicates, the average values for parameters m and n are 0.293 and 11.571, 

respectively, whereas m and n are 0.207 and 10.288, respectively, for network liquids 

such as B2O3, GeO2, and SiO2 

The composition-dependent constant B is determined by introduction of parameter α. To 

calculate α, the constituents are classified into the following three categories, according 

to their oxygen content. 

 Glass formers: SiO2, P2O5, etc. 

 Network modifiers: CaO, MgO, FeO, Na2O, K2O, etc. 

 Amphoterics: Al2O3, Fe2O3, etc. 

α =
Mole fraction of Network modifiers

Mole fraction of Network modifiers + Mole fraction of Amphoterics
                         (2.24) 
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Then, the parameter B is linked with the composition, which can be expressed as a 

polynomial equation. 

B = B0 + B1 ∙ XSiO2 + B2 ∙ XSiO2
2 + B3 ∙ XSiO2

3                                                                                 (2.25) 

Bi = ai + bi ∙ α − ci ∙ α2                (2.26) 

i=0, 1, 2, and 3. 

where: ai, bi, and ci are fitting parameters; XSiO2 is the mole fraction of silica. For the 

SiO2–Al2O3–CaO system, four polynomial equations are used to calculate the 

parameter B. 

B0 = 13.8 + 39.9355 ∙ α − 44.049 ∙ α2 

B1 = 30.481 − 117.1505 ∙ α + 129.9978 ∙ α2               (2.27) 

B2 = −40.9429 + 234.0486 ∙ α − 300.04 ∙ α2 

B3 = 60.7619 − 153.9276 ∙ α + 211.1616 ∙ α2 

Then, the parameter A can be easily obtained from B. By applying the Urbain model to 

multicomponent mixtures, Mills and Broadbent [55] reported that the composition 

dependence of viscosity can be properly described. However, Kondratiev and Jak [56] 

found that it is not capable of describing viscosity over the entire compositional range of 

the studied slag systems in 2001. 

Riboud model 

Riboud et al. modified the composition-dependent constants A and B in the Urbain 

model, to describe the viscosities of the system CaO–Al2O3–SiO2–CaF2 [14]. This 

modified Urbain model is called the Riboud model, in which the slag components are 

classified into five different categories as follows. 

 ‘SiO2’ group: SiO2, P2O5, etc. 

 ‘CaO’ group: CaO, MgO, FeO, etc. 
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 ‘Al2O3’ group: Al2O3, etc. 

 ‘CaF2’ group: CaF2 

 ‘Na2O’ group: Na2O, K2O, etc. 

Then, the compositional relationship of the Urbain model was modified into the following 

expression. 

ln A = −35.76 X‘Al2O3’ + 1.73 X‘CaO’ + 7.02 X‘Na2O’ + 5.82 X‘CaF2’ − 19.81                         (2.28) 

B = 68.833 X‘Al2O3’ − 23.896 X‘CaO’ − 39.159 X‘Na2O’ − 46.356 X‘CaF2’ + 31.140             (2.29) 

where: A and B are the composition-dependent constants; X‘i’ is the mole fraction of 

each group. 

This model was originally developed for continuous casting mould fluxes, while it was 

later found that it could be applied to other metallurgical slags, especially for the 

compositional range listed in Table 2.4. 

Table 2.4. The composition range suitable for the Riboud model 

Components Mass fraction range 

SiO2 0.27–0.56 
Al2O3 0.00–0.12 
CaO 0.08–0.46 
Na2O 0.00–0.22 
CaF2 0.00–0.18 

 

Kalmanovitch-Frank model 

In 1988, Kalmanovitch and Frank [57] employed the Urbain model to calculate the 

viscosities of particular coal ash slags, then modified the relationship between constants 

A and B according to the following equation. 

lnA = −(0.2812 ∙ B + 14.1305)                                                                                                       (2.30) 
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Srinivasachar et al. reported that the Kalmanovitch-Frank model cannot give a good 

performance in describing the viscosity (above 103 Pa•s) at low temperatures [58]. A 

poor performance in describing the viscosity of FeO-containing systems is revealed by 

Jak et al. [59]. Nevertheless, Vargas et al. reported that the model can describe the 

viscosities of some special coal ash slags, such as British coal ash slags, Illinois No. 6 

coal ashes, and Pittsburgh No. 8 coal ashes [57]. 

Hurst model 

The Urbain model was modified by Hurst et al. to describe the viscosity of the coal ash 

slag system SiO2–Al2O3–CaO–FeO, based on a least squares fit of the experimental 

data to the transformed Weymann-Frenkel model [60]. 

η = A ∙ T ∙ exp (
B

R ∙ T
)                                                                                                                            (2.31) 

lnη = ln A + ln T +
B

R ∙ T
                                                                                                                    (2.32) 

ln η = a0 + a1y + a2y2 + a3x + a4xy + a5xy2 + a6x2 

            +a7x2y + a8x2y2 + a9x3 + a10x3y + a11x3y2                                                                  (2.33) 

where: T is the absolute temperature; R is the gas constant; A and B are composition-

dependent constants; x and y are the normalized mole fractions 

ms (ms + ma + mc + mf)⁄  and (mc + mf) (ma + mc + mf)⁄ , respectively. Here, the 

subscripts s, a, c, and f correspond to SiO2, Al2O3, CaO, and FeO, respectively. 

It was found that a better performance is given over a smaller range of compositions, 

compared to the Urbain model that is applied to the whole range of compositions. In 

1999 the model was applied to the coal ash slags containing 5 wt.% and 10 wt.% FeO 

[61], and was further extented to the slags containing 15 wt.% FeO in 2000 [62]. 

However, different sets of model parameters are required for different ranges of FeO 

contents. As described by Ilyushechkin and Hla, a new set of model parameters is 

required when the Hurst model is applied to describe the viscosity of coal ash slags 
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containing 16.5–21 wt.% FeO [63]. Moreover, the viscosity model used by Ilyushechkin 

and Hla is applicable only for temperatures from 1450oC to 1550oC. 

Kondratiev-Jak model 

Based on the Urbain model, a model for predicting viscosities of the fully liquid system 

Al2O3–CaO–‘FeO’–SiO2 was developed by Kondratiev and Jak in 2001 [56], with two 

modifications as follows. The first is to introduce the composition-dependent parameter 

m instead of a constant optimized value. 

m = �mi ∙ Xi                                                                                                                                       (2.34) 

where: mi and Xi are the model parameter for a pure oxide and the mole fraction of the 

corresponding oxide, respectively. 

Another modification is to introduce the continuous composition-dependent parameter B 

for two different network modifiers, i.e. FeO and CaO, in place of an average B simply 

calculated from each modifier. 

B = � bi0 ∙ Xsi + ��(bi
C,j ∙

Xc
Xc + XF

+ bi
F,j ∙

XF
Xc + XF

)
2

j=1

3

i=0

3

i=0

∙ αj ∙ Xsi                                              (2.35) 

α =
Xc + XF

Xc + XF + XA
                                                                                                                                 (2.36) 

where:  XA , Xc , XF , and XS  are the mole fractions of Al2O3, CaO, FeO, and SiO2, 

respectively; bi0 is the parameter for the system SiO2–Al2O3; bi
C,j and bi

F,j are the sets of 

parameters for CaO and ‘FeO’, respectively. 

It was found that a good agreement between calculated viscosities and experimental 

results is achieved for the quaternary system Al2O3–CaO–‘FeO’–SiO2. However, it still 

cannot describe the Al2O3-induced varying viscosity maxima due to the lack of an 

effective description about the structural dependence of the viscosity. When the 

Kondratiev-Jak model is employed to calculate the viscosity of the liquid phase for the 
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viscosity model that predicts viscosities of partly crystallized slags [64], it might cause a 

great deviation. 

Summary 

The models mentioned in this section belong to semi-empirical models, which lack 

sufficient consideration of liquid structure. Most of them are only capable in their own 

compositional range and normally need more than one set of model parameters. 

2.3.1.2.2 Structure based models 

This kind of models have related the structures of slags rather than simple bulk 

compositions to the viscosity, which are, therefore, defined as structure based models, 

such as the Zhang-Jahanshahi model, the Reddy model, the Iida model, the KTH model, 

the Avramov model, the Quasi-chemical viscosity model, and the FactSage model. The 

consideration of internal structure makes the viscosity models show a better 

performance over a wide range of compositions and temperatures. The models of this 

style will be reviewed in this section, briefly. 

Zhang-Jahanshahi model 

Based on the Weymann-Frenkel type temperature dependence of viscosity, the Zhang-

Jahanshahi model [65, 66] was developed by linking three types of oxygen, i.e. bridging, 

non-bridging, and free oxygen, to the composition dependence of viscosity, which is 

shown as a simplified Weymann-Frenkel model. 

η = Aw ∙ T ∙ exp�
Eηw

R ∙ T
�                                                                                                                       (2.37) 

where: Aw is the pre-exponential parameter; Eηw is the activation energy. 

It is well known that the viscosity and activation energy increase with increasing silica 

content in silicate melts, which is thought to be the outcome of the network structure 

development. Such structural change can be indicated by the degree of polymerization. 

Zhang and Jahanshahi introduced three types of oxygen as mentioned above to reveal 
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the degree of polymerization. The concentration of oxygen can be obtained by 

experiments, such as molar refractivity, infrared, and Raman spectroscopy, or 

calculated by molecular dynamic simulations of silicate melts. Due to the fact that both 

experimental data and simulation results were limited at that time, the cell model, which 

was put forward by Kapoor and Frohberg for binary and ternary silicate melts, was 

employed to calculate the concentrations of three types of oxygen. By using them, the 

activation energy of the simplified Weymann model is given by 

Eηw = a + b ∙ (NO0)3 + c ∙ (NO0)2 + d ∙ (NO2−)                                                                             (2.38) 

where: a, b, c, and d are fitting parameters; NO0 and NO2− are mole fractions of bridging 

and free oxygen, respectively. The pre-exponential parameter can be obtained by Eq. 

(2.39). 

ln Aw = a′ + b′ ∙Eηw                                                                                                                            (2.39) 

where: a′  and b′  are unique coefficients for a particular system. Although fitting 

parameters were optimized by the experimental data of binary silicates, it was 

demonstrated that this model can provide a good description of the viscosity in higher 

order slag systems with respect to both the change in silica content and the effect of 

different cations on viscosity. However, the values of the viscosity extrapolated from 

SiO2-based binary systems to pure SiO2 differ. 

Reddy model 

The Reddy model [67] was developed to estimate the viscosity of the ternary system 

Na2O–SiO2–B2O3, by employing the Bockris-Reddy type temperature behavior, which is 

given by 

η = 1.68 × 10−9�XB2O3 + 0.77XSiO2� ∙ �XB2O3 + 1.04 XSiO2�
1
2 ∙ 

        �3 XB2O3 + 2 XSiO2�
−32 ∙ (NO0) ∙ T

1
2 ∙ exp (

E
RT

)                                                                        (2.40) 
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where: XB2O3 and XSiO2 are equivalent mole fractions; NO0 is the mole fraction of bridging 

oxygen; T is the absolute temperature; E is the energy allowing to break the bond of the 

ionic unit; R is the gas constant. In this model, SiO2 and B2O3 are characterized as 

network formers while Na2O is considered as a network modifier. Thus, the mole 

fraction of bridging oxygen in the melt based on the atomic pair model is obtained by the 

following equation. 

NO0 =
3XB2O3 + 2XSiO2 −

1
2 NO−

2XB2O3 + XSiO2 + 1
                                                                                                      (2.41) 

where: NO−  is the mole fraction of non-bridging oxygen. And another term E can be 

given by: 

E = A + B ∙ T 

A = k + m ∙ XB2O3 + n ∙ XB2O3
2 + p ∙ XB2O3

3                                                                                      (2.42) 

B = α + β ∙ XB2O3 + γ ∙ XB2O3
2 + δ ∙ XB2O3

3  

where: all parameters mentioned in Eq. (2.42) can be expressed by polynomial equation. 

k = −4.10909 × 105 − 3.16176 × 105R + 1.216120 × 106R2 − 5.13104 × 105R3 

m = −1.343160 × 106 + 1.7586 × 107R − 2.2046 × 107R2 + 1.768940 × 106R3 

n = 1.59975 × 107 − 8.4629 × 107R + 9.18343 × 107R2 − 2.76946 × 106R3 

p = −2.15337 × 107 + 9.79282 × 107R − 1.01984 × 107R2 + 2.99583 × 106R3 

α = 1557.73 − 2146.51R + 684.746R2 + 66.530R3                                                                (2.43) 

β = −8493.96 + 8023.87R + 1457.36R2 − 297.47R3 

γ = 13734.2 + 2565.39R − 22661.9R2 + 9981.06R3 

δ = −7326.2 − 14018.2R + 28442.3R2 + 10587.9R3 
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where: R is the ratio of XSiO2/XNa2O. 

It was found that the correlation of parameters nh and <rh> in the Bockris-Reddy model 

to composition is dependent on the definition of the structure units. Moreover, the 

performance of this model is satisfactory only for a limited range of compositions. In 

2004, Zhang and Reddy [68] used the Reddy model to predict the viscosity of the same 

system Na2O–SiO2–B2O3 containing a higher content of SiO2 (ratio R=5), where the 

polynomial equation for the term E is completely changed. 

Iida model 

The basicity index was introduced in the Iida model [69], by which the network structure 

is linked to viscosity. The Iida model is expressed in a similar form of the Arrhenius 

model. 

η = A ∙ η0 ∙ exp �
E

Bi
∗�                                                                                                                           (2.44) 

where: A and E are fitting parameters; η0 is the hypothetical viscosity of non-network 

forming melts; Bi
∗  is the modified basicity index. All the parameters are further 

expressed by 

A = 1.745 − 1.962 × 10−3T + 7.000 × 10−7T2 

E = 11.11 − 3.65 × 10−3T 

η0 = �η0i ∙ Xi                                                                                                                                     (2.45) 

η0i = 1.8 × 10−7
[Mi(Tm)i]1 2⁄ exp (Hi/RT)
(Vm)i

2 3⁄ exp [Hi/R(Tm)i]
 

Hi = 5.1(Tm)i
1/2 

Bi
∗ =

∑(αiWi)B + αFe2O3
∗ WFe2O3

∑(αiWi)A +αAl2O3
∗ WAl2O3 + αTiO2

∗ WTiO2
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where: η0i is the hypothetical viscosity of the pure component; Xi is the mole fraction of 

each component; Mi is the formula weight of each component; (Tm)i is the melting point 

of each component; Hi is the coefficient of each component; (Vm)i is the molar volume 

at the corresponding melting point of each component; αi  and Wi  are the specific 

coefficient and the mass percentage of each component, respectively; the subscripts A 

and B represent acidic oxide and basic oxide or fluoride, respectively; αi∗ is the modified 

specific coefficient indicating the interaction of the amphoteric oxide with other 

components. 

The temperature-dependent parameters A and E were obtained by fitting the 

experimental data. The αi∗ could be obtained by correlating linearly to the basicity index 

Bi  and the mass percentage of the amphoteric oxides Wi  due to the fact that the 

amphoteric effect varies with the change in overall basicity of the slag. The other 

parameters mentioned above can be found or simply calculated from handbooks of 

physical properties. This model needs many fitting parameters to describe the 

amphoteric effect of Al2O3, and these fitting parameters might be applicable in a limited 

range of compositions and temperatures, which was revealed by Forsbacka and 

Holappa when applying the Iida model to describe the viscosity of SiO2–CaO–CrOx 

slags [70]. 

KTH model 

Based on the Eyring model, the KTH model [71, 72] to estimate viscosities for ionic 

melts was developed by linking the Gibbs energy of activation of viscous flow to the 

composition dependence of the viscosity, as shown in the simplified Eyring model. 

η = A ∙ exp �
∆G∗

R ∙ T
�                                                                                                                                (2.46) 

where: A is the pre-exponential term; ∆G∗ is the Gibbs energy of activation of viscous 

flow; R is the gas constant; T is the absolute temperature. The pre-exponential term A 

can be calculated with 



Literature review 

36 

A =
hNρ

M
                                                                                                                                                  (2.47) 

where: h is Planck's constant; N is Avagadro's number; ρ is the density of the melt; M is 

the molecular weight. 

For unary systems, the pre-exponent term A can be directly calculated from the 

molecular weight and the density of the pure liquid. The Gibbs energy of activation of 

viscous flow is obtained by 

∆G∗ = a + b ∙ T + c ∙ T ∙ ln T +.  .  .                                                                                                     (2.48) 

where: a, b, and c are the parameters optimized from experimental data. In addition, it is 

enough to consider the first two or three terms of Eq. (2.48) for good prediction of 

viscosity of pure oxide. 

In the case of multicomponent systems, the molecular weight and density are calculated 

with the following equations. 

M = �Xij ∙  Mij 

 ρ = �Xij ∙  ρij                                                                                                                                     (2.49) 

where: Xij  is the mole fraction of the component CiviAjvj ; Mij  and ρij  represent the 

molecular weight and density of the component CiviAjvj ;, respectively. Here, for the 

component CiviAjvj, Ci and Aj represent the cation and anion, respectively, whereas the 

subscripts vi and vj are the stoichiometric coefficients. The Gibbs energy of activation in 

this case can be expressed by 

∆G∗ = ��Xij ∙ ∆Gij
∗ + Gideal + ∆EG∗                                                                                          (2.50) 

where: ∆Gij
∗  is the Gibbs energy of activation of pure component CiviAjvj in liquid state, 

thus the term ∑∑Xij ∙ ∆Gij
∗  stands for the linear summation of the Gibbs energy of 
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activation from the pure components without consideration of interaction between 

different components; the term Gideal represents the change in Gibbs energy resulting 

from the ideal mixing of components; ∆EG∗  represents the change in Gibbs energy 

resulting from the mutual interactions between different species. 

This model can give a good estimation of viscosities for various metallic as well as slag 

systems, from unary to quaternary systems. However, the structural dependence of 

viscosity cannot be completely described by linking the viscosity to the Gibbs energy. 

Seetharaman et al. stated that the KTH model cannot cover the entire slag area like 

other models such as the Iida model and the Reddy model [73]. 

Avramov model 

Based on the non-Arrhenius type temperature dependence of viscosity (the AM model), 

Avramov introduced the Qn-groups to reveal the dependence of effective activation 

energy on composition, and then to display the composition dependence of viscosity 

[74]. 

 
Fig. 2.13. Schematic diagram of Qn-groups [75] 

These Qn-groups were developed from the modified random network structure, where 

the silica tetrahedra are connected by sharing oxygen ions. According to the 
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coordination number of Si in silicates, the components in silicate melts are classified as 

five different Qn-groups: Q0, Q1, Q2, Q3, and Q4, which is illustrated in Fig. 2.13. 

The activation energy for molecular motion En is strongly dependent on n. The 

distribution of Qn-groups is assumed to be random at high temperature. Thus, the 

average jump frequency is modified by 

〈ν〉 = ν∞�Qn ∙ exp �−
En

R ∙ T
�                                                                                                          (2.51)

4

n=0

 

where: ν∞  is the variation frequency, ca. 1012 s–1; R is the gas constant; T is the 

absolute temperature; Qnis the concentration of Si with n ‘strong’ oxygen bonds; En is 

the activation energy for molecular motion with n ‘strong’ oxygen bonds. By using the 

Maxwell relationship, the viscosity is obtained by 

η =
η∞

∑ Qn ∙ exp (− En
R ∙ T)4

n=0

                                                                                                                (2.52) 

where: η∞  is the pre-exponential constant. This model can describe the so called 

‘lubricant effect’ that the viscosity sharply falls due to the presence of a low 

concentration of modifying oxides. However, the amphoteric or charge compensation 

effect induced by Al2O3 cannot be described. 

Quasi-chemical viscosity model 

The fundamental theory of this model is Frenkel’s kinetic theory of liquids. According to 

this theory, the shear force in viscous flow, which is caused by the movement of 

structural units, can be determined by both the ability of structural units to jump over the 

potential barrier and the concentration of ‘holes’ in the liquid. Based on the assumption 

of liquid state and liquid viscosity put forward by Frenkel, the Quasi-chemical viscosity 

model is given by [76] 

η =
2RT
∆Evap

∙
(2πmSUkT)

1
2

νSU
2
3

∙ exp �
Ea
RT
�                                                                                              (2.53) 



Literature review 

39 

where: △Evap is the energy of vaporization; Ea is the activation energy; mSU and υSU are 

the weight and volume of a structure unit of viscous flow, respectively. These four 

parameters are influenced by the definition of the structural unit. Therefore, it is 

important to properly define the structural unit of the viscous flow in the Quasi-chemical 

viscosity model. The concept of the structure of silicate slag put forward by Fincham 

and Richardson was introduced in this model. There are three types of oxygen, i.e. 

bridging, non-bridging, and free oxygen, in silicate slags. Following this concept, the 

structural units of viscous flow can be defined as their combination where oxygen 

anions partly associate with metal cations: Si0.5O, Me2 n⁄
n+ O, and Me1 n⁄

n+ Si0.5O, as illustrated 

in Fig. 2.14. 

 

Fig. 2.14. Presentation of internal structure and viscous flow in silicates, where: O0, O–, 
and O2– are the bridging, non-bridging, and free oxygen, respectively [76] 

Thus, for a binary system SiO2–MeO as an example, there are three different structural 

units Si–O–Si (Si0.5O), Si–O–Me (Me1 n⁄
n+ Si0.5O.), and Me–O–Me (Me2 n⁄

n+ O), which can be 

abbreviated as the so called second nearest neighbor bonds Si–Si, Si–Me, and Me–Me, 

respectively. The four parameters of the Quasi-chemical viscosity model, thereby, can 

be given by 

mSU = mSi−SiXSi−Si + mMe−SiXMe−Si + mMe−MeXMe−Me 
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νSU = νSi−SiXSi−Si + νMe−SiXMe−Si + νMe−MeXMe−Me                                                                 (2.54) 

Ea = Ea,Si−Si XSi−Si + Ea,Me−SiXMe−Si + Ea,Me−Me XMe−Me + �Ea
ch/c� 

∆Evap = exp�Eν,Si−SiXSi−Si + Eν,Me−Si XMe−Si + Eν,Me−Me XMe−Me� 

where: XSi–Si, XSi–Me, and XMe–Me are the mole fractions of the structural units; mSi–Si, 

mMe–Si, and mMe–Me are the weights of the structural units; υSi–Si, υSi–Me, and υMe–Me are 

the volumes of the structural units; Ea,Si−Si, Ea,Me−Si, and Ea,Me−Me are the partial molar 

activation energies, and �Ea
ch/c�  represents the charge compensation effect; Eν,Si−Si , 

Eν,Me−Si, and Eν,Me−Me are the dimensionless partial vaporization energy coefficients. 

This model, in general, shows a good agreement between experimental data and 

calculated results for the fully liquid system Al2O3–CaO–‘FeO’–MgO–SiO2. But, it 

involves a large deviation at high silica content. Moreover, the amphoteric or charge 

compensation effect cannot be described with the second nearest neighbor bond 

concentrations, and some additional specific terms are needed to describe the Al2O3-

induced viscosity maximum, requiring many complicated model parameters. 

FactSage model 

By relying on the thermodynamic model and database put forward by Kondratiev and 

Jak, a viscosity model [77, 78] (a built-in module in FactSage software package and 

here is called the FactSage model) was developed by linking the concentration of Qn 

species to the viscosity. In this model, the structure of silicate melts is characterized by 

the concept of Qn species, where the concentration of Qn species can be calculated by 

the concentration of bridging oxygen as mentioned in the Quasi-chemical viscosity 

model. As an example, the probability of the appearance of Q4 species in silicate melts 

is given by 

Y(Q4)=p4                  (2.55) 
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where: p is the probability to form bridging oxygen. In terms of polymerization of the 

silicate melts, it can be described by the degree of connectivity of the Qn species. With 

increasing silica content, the silica tetrahedra polymerize to form dimers and trimers, 

even longer chains or rings. The probability of such a change in structure can be given 

by 

Y(Q4,n)=pn                  (2.56) 

where: the term Y(Q4,n) represents the degree of connectivity of silica tetrahedra. Based 

on the Arrhenius type temperature dependence, a model is developed by the 

modification of the constants A and B in the Arrhenius model, taking binary systems 

SiO2 − MeOx(MeOx = NaO0.5, CaO, MgO, … ) as an example. 

A = AMeOxX(MeOx) + ASiO2
∗ X(SiO2) + ASiO2

E X(SiO2)p40 + AMe−SiX(MeOx) X(SiO2) + 

         AMe−Si
R X(SiO2)(p4 − p40)                                                                                                          (2.57) 

E = EMeOxX(MeOx) + ESiO2
∗ X(SiO2) + ESiO2

E X(SiO2)p40 + EMe−SiX(MeOx) X(SiO2) + 

        EMe−SiR X(SiO2)(p4 − p40)                                                                                                            (2.58) 

where: X(SiO2)p40 stands for the concentration of clusters of interconnected Si–Si pairs; 

ASiO2
E  and ESiO2

E  are parameters to describe the dramatic increase in viscosity when 

approaching pure SiO2; the term X(SiO2)(p4 − p40)  represents the concentration of 

smaller clusters of interconnected Si–Si pairs; the cross-term X(MeO𝑥) X(SiO2), AMe−Si, 

EMe−Si , AMe−Si
R , and EMe−SiR  are parameters for describing the non-linear effect of 

composition on viscosity. The viscosity, therefore, is estimated with Eq. (2.4). 

The model is capable of describing viscosities of the system NaO0.5–MgO–CaO–AlO1.5–

SiO2 and its subsystems. Besides the Qn species, additional associates NaAlO2, 

CaAl2O4, and MgAl2O4 are introduced to describe the Al2O3-induced viscosity maximum. 

However, the Al2O3-induced viscosity maximum for binary systems such as the system 

Al2O3–CaO is not presented. Moreover, a pronounced decrease in viscosity around 0.50 

mole fraction SiO2 is not well described for the binary systems SiO2–Na2O and SiO2–
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K2O. In order to improve the performance in describing the viscosity of the binary 

systems containing alkali oxides, Kim et al. modified the model of Grundy et al. [77], in 

which an additional excess viscosity contribution resulted from the formation of large 

rings of Q2- and Q3-species is required for each alkali oxide-SiO2 system [79]. 

Summary 

The models of this style are mostly complicated and involve numerous model 

parameters, most of which are only mathematical fitting parameters and lack of clear 

physico-chemical meaning. The models are still not capable of describing the viscosity 

over the whole range of compositions and a wide range of temperatures. Moreover, 

some of the models are not self-consistent, such as the Zhang-Jahanshahi model. 

2.3.2 Multiphase slag systems 

It is common that slagging gasification is carried out in multiphase slag systems where 

coal particles are suspended in the molten slag or crystallizing particles present due to 

low temperature. The presence of solid phases causes a large deviation for the models 

developed for fully liquid phase. The deviation increases with increasing volume fraction 

of solid phases. Furthermore, viscous flow behavior will transform from Newtonian type 

to non-Newtonian type if the solid fraction is greater than 10%–40% depending on the 

shape and size of solid particles [80]. 

Constant and continuous efforts have been made to describe the viscous flow behavior 

of multiphase slag systems. A few examples like the Einstein model and the Roscoe 

model are presented here to give an acceptable mechanism of viscosities in solid-liquid 

systems. 

Einstein model 

Based on the Stokes equation, a linear model was derived by Einstein [81, 82] at the 

beginning of the twentieth century, where the viscosity of a solid-liquid mixture is linked 

to the volume fraction of solid particles. 
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ηe = η ∙ (1 + 2.5θ)                                                                                                                               (2.59) 

where: ηe  is the effective viscosity; η  is the pure solvent viscosity; θ  is the volume 

fraction of solid particles in the slag. 

In terms of the performance of the Einstein model, it can describe the viscosity only in a 

mixture with very low fraction of solid particles (< 5 vol%). In 1911, it was found by 

Einstein that the factor 2.5 in the model is only valid for rigid spheres. In 1950 Ward and 

Whitmore [83] stated that the factor may vary between 1.9 and 4.0 according to the 

particle size distribution. 

Roscoe model 

On the basis of the Einstein model, the Roscoe model [84] was developed with a 

nonlinear relationship between the viscosity and volume fraction of solid particles, 

instead of the linear relationship in the Einstein model. In order to find out the 

dependence of viscosity on the size distribution of the solid particles, Roscoe derived 

the following expression through the study of viscosities of a suspension containing 

spheres with very diverse sizes. 

ηe = η ∙ (1 − θ)−2.5                                                                                                                              (2.60) 

This equation can deal with solid particles with diverse size and is theoretically valid for 

all fractions of solid particles in the liquid. 

In order to estimate the viscosity at high volume fractions of uniform solid particles in the 

slag, another experiment was conducted by Roscoe, where a suspension with high 

concentration of uniform spheres was employed. The corresponding relation was 

obtained according to the argument of Vand [85], which is given by 

ηe = η ∙ (1 − 1.35θ)−2.5                                                                                                                      (2.61) 

This model is not strictly constraint to the aggregates with spherical shape in the liquid. 

These two similar models are later generalized as the Einstein-Roscoe model, which is 

given by 
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ηe = η ∙ (1 − R ∙ θ)−n                                                                                                                           (2.62) 

where: R and n are empirical parameters optimized by experimental data. This model 

was later examined by other authors. In the study of viscosities of partly crystallized 

slags in the Al2O3–CaO–“FeO”–SiO2 system, Kondratiev and Jak stated that it is 

allowed to give a good fit for the multiphase slag system with a volume fraction of solid 

particles up to 30% by assuming the empirical factors R= 2.04 and n= –1.29 [64]. 

In 2011, the investigation by Wu et al. also demonstrated that the Einstein-Roscoe 

model can describe the effect of solid particles on viscosity in the case of both room 

temperature and high temperature [86]. It was also found that this model can be applied 

to solid particles with irregular shape without any modifications of the model parameters. 

2.4 Methods of viscosity measurements 

This section discusses the methods with which the viscosity of slag at high temperature 

is measured. 

2.4.1 Rotating cylinder method 

A rotating cylinder viscometer is the most widely used method to measure the viscosity 

of the slag at high temperature. Usually, an inner cylinder (or bob) is placed in an outer 

cup (or cylinder), as shown in Fig. 2.15. In this figure the inner cylinder is rotated 

whereas the outer cup is fixed, and the cup is filled with the sample of the slag. When 

the inner cylinder is rotated at a constant speed, the viscosity can be determined from 

the measurement of torque that is required to rotate the inner cylinder. When the gap 

between the inner cylinder and the outer cup is small enough, the absolute viscosity 

measurement is feasible and thereby the viscosity can be calculated with the following 

equation [87]. 

η =
T

4πLω
�

1
ri2
−

1
ro2
�                                                                                                                             (2.63) 
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where: η is the viscosity (Pa•s); T is the torque (N·m); ω is the angular velocity (s–1); L is 

the depth of penetration (m); ri and ro are the radii of the inner and outer cylinders (m), 

respectively. When the ratio of radii of the outer and inner cylinders is greater than 1.1, 

the absolute viscosity measurement is not feasible. However, for given experimental 

conditions, ri, ro, and L are known, the viscosity can be calculated with 

η = C0
T
ω

                                                                                                                                                 (2.64) 

where: C0 is the equipment constant which can be obtained from calibration with liquids 

of known viscosity. 

 

Fig. 2.15. Schematic diagram of the rotating cylinder method [87] 

Besides the method of rotated inner cylinder and fixed outer cup, the principle is the 

same with the method of rotated outer cup and fixed inner cylinder. The rotational 

method is simple and only several parameters are required to calculate the viscosity. 

However, the centering of the inner cylinder is very important for the measurement 

accuracy. Another drawback is that the cylinder is made of refractory material, which 

may react with the slag at high temperature. 
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2.4.2 Falling body method 

When a solid body (with the shape of sphere, cylinder, or tube) falls through a fluid, both 

the downward gravitational force and the dragged upwards force due to viscosity act on 

the body. The resultant force will determine the descent or ascent velocity of the falling 

body. Using the falling body method, the viscosity is calculated based on Stokes’ law. 

η =
2r2g�ρsphere − ρliquid�

9v
                                                                                                               (2.65) 

where: η is the viscosity (Pa•s); g is the gravitational acceleration (m/s2); r is the radius 

of the sphere (m); v is the velocity of the sphere (m/s); ρ is the density (kg/m3). 

The falling body method is convenient for viscosity measurements. One drawback for 

this method is that the falling sphere is not totally free. Instead, it is suspended by a very 

fine thread or wire to control the rate of fall, which makes it difficult to obtain consistent 

results [88]. 

2.4.3 Capillary method 

Capillary viscometers have also been widely used for measuring viscosity. Fig. 2.16 

shows a schematic diagram of the capillary method. A sample liquid drains or is forced 

through a fine-pore tube (capillary tube) and the viscosity can be calculated with 

η =
πr4 Δp t

8 V L
                                                                                                                                           (2.66) 

where: η is the viscosity (Pa•s); Δp is the pressure drop through capillary (kg/ms2); V the 

volume of liquid (m3); t is the time (s); r and L are the radius and length of capillary (m), 

respectively. 

Performing the absolute viscosity measurement is difficult for the capillary viscometer 

[87]. Therefore, the relative viscosity measurement requiring the calibration of the 

instrument is often adopted. 
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Fig. 2.16. Schematic diagram of the capillary method [87] 

 

2.4.4 Parallel plates method 

The parallel plates method can be used to measure the viscosity of samples in the 

range from 5 to 11 on the logarithmic poise scale. The sample to be tested is 

sandwiched between two horizontal plates inside a well-insulated furnace, as depicted 

in Fig. 2.17(a). The upper plate is actually a plunger, with which the sample is loaded 

and the rate of sagging is recorded as a function of time using a linear voltage 

displacement transducer or a similar instrument. The deformation of the sample is 

determined by the viscosity. As shown in Fig. 2.17(b), for no-slip samples, the radial 

velocity of the sample in contact with the plates is zero, and the viscosity in the case of 

no-slip can be calculated with [89] 

η =
2πMgh5

3V �dh
dt� (2πh3 + V)

                                                                                                                    (2.67) 
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where: M is the applied load (kg), g is the gravitational acceleration (m/s2); dh/dt is the 

deformation or sagging rate (m/s); h and V are the height (m) and volume (m3) of the 

sample, respectively. For perfect-slip samples, the radial velocity is a function of radius 

only, and thereby the viscosity can be calculated with 

η =
Mgh2

3V �dh
dt�

                                                                                                                                           (2.68) 

 

 
 
 
 

 

(a) (b) 
Fig. 2.17. Schematic diagram of the parallel plates method [90] and deformation of the 

sample [89] 

 

2.4.5 Rod elongation method 

The rod elongation method has been widely used for the viscosity measurement in the 

range from 8 to 14.5 on the logarithmic poise scale. The viscosity is calculated with Eq. 

(2.69) [19]. 

η =
Lmg
3πr2v

                                                                                                                                               (2.69) 
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where: v is the elongation velocity (m/s); m is the mass related with the load (kg); g is 

the gravitational acceleration (m/s2); L and r are the length and radius of a filament (m), 

respectively. 
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3 Experiments 

In the experimental study, a rotating cylinder viscometer is used to determine the 

viscosity. The structure of the apparatus for viscosity measurements is shown in Fig. 
3.1, which consists of three main components: a rotational viscometer, a magnetic 

coupling, and a furnace. 

 

Fig. 3.1. Structure and schematic of the experimental setup for viscosity 
measurements 

The furnace equipped with molybdenum silicide (MoSi2) heating elements can heat up 

to the temperature of 1650oC and the pressure within the Al2O3 tube can reach up to 5 

bar. To achieve a sufficient cooling effect, two independent recycled water cooling 

systems at the top and bottom of the furnace are designed. Two thermocouples are 

adopted to control the temperature during the operation. One is used to measure the 

temperature of crucible; the other is used to detect the temperature of the heating 
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elements. The furnace should be perpendicular to the ground, which insures that the 

crucible stands perpendicular to the ground. Otherwise, the centering of the spindle and 

the crucible cannot be consistent. 

More attention should be paid to the gastight joint between the cooling element and the 

Al2O3 tube, as shown in Fig. 3.1. Otherwise, the leak of protecting gas will directly 

change the atmosphere within the Al2O3 tube and thereby cause a potential oxidation in 

the case of the molybdenum crucible and spindle. It brings a deviation of viscosity due 

to contamination of slag as well as the change in dimension of the crucible and spindle. 

The viscosity of some systems such as FeO/Fe2O3-containing systems is strongly 

influenced by the partial pressure of oxygen. Moreover, the leak of protecting gas such 

as argon or hydrogen might cause a serious degradation of the heating elements of 

MoSi2. 

A commercial viscometer (Rheometer RC 1) is employed to measure the torque 

generated by the slag. The technical specification of this viscometer is as follows. 

 Maximum torque: 50 mNm 

 Resolution of torque: 0.01 mNm 

 Range of revolution speed: 0.7–800 r/min 

 Accuracy of torque: ±1% 

The viscometer is originally designed for use at room temperature. Here, it is 

incorporated into the high temperature furnace by using the magnetic coupling. With this 

method, the shaft of the viscometer is not exposed to the high temperature, at which the 

performance of the viscometer such as the measurement accuracy might be influenced. 

The use of the magnetic coupling can also allow a pressured vessel and thereby the 

investigation of the pressure dependence of viscosity is feasible. In addition, the partial 

pressure of oxygen can be easily controlled within the sealed vessel. Then the influence 

of the partial pressure of oxygen on viscosity of systems containing the transition metal 

oxides, such as FeO and Fe2O3, can be investigated. 
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Fig. 3.2. Spindle and crucible 

In terms of spindle and crucible (see Fig. 3.2), molybdenum is employed due to its high 

melting temperature (2623oC). The diameters of the bob and crucible are 14 mm and 29 

mm, respectively. That means the ratio of radii of crucible and bob is greater than 1.1, 

and thereby the absolute viscosity measurement is not applicable. Thus, the equipment 

constant C0 should be calibrated with liquids of known viscosity, and the viscosity is 

determined by Eq. (2.64). 

To calibrate the viscometer, the first step is to measure the torque losses at the 

magnetic coupling as well as mechanical joints. By idling the viscometer, the torque 

losses can be measured. As shown in Fig. 3.3, the torque losses linearly increase over 

the rotational speed. The torque losses remain the same at the constant rotational 

speeds. It can be seen that the measured torque losses have some random deviations. 

One source of the deviation is the spindle that involves a certain bending. The spindle 

with a certain bending cannot rotate perpendicular to the ground, and possibly further 

results in an undesired turbulence, even a non-Newtonian flow condition between 

spindle and crucible, which produces a random deviation of the torque measured. 
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Therefore, the spindle needs to be straightened. Another possible source is the gear 

joint between the magnetic coupling and viscometer, in which the gears cannot occlude 

well with each other. Thus, the transmission of torque is not stable, which brings a 

random deviation. To obtain a better transmission of torque, a universal joint is 

recommended to replace the gear joint. 

  
(a) torque losses over rotational speed (b) torque losses over time 

Fig. 3.3. Torque losses over rotational speed and time 

It should be pointed out that the deviation of the torque losses sometimes might be 

greater than the torque generated by the slag. This might cause a negative value of 

viscosity. To prevent this error, magnitude of the torque losses should be much smaller 

than that of the torque generated by the slag. It is noted that an increased ratio of torque 

generated by the slag and torque losses leads to an increased accuracy of viscosity 

measurement. Normally, such ratio can be increased by increasing the rotational speed. 

For a given sample of slag, the maximum revolution speed allowed by the viscometer at 

a certain temperature can be determined before the viscosity measurement, which is 

performed by the LabVIEW programming. 

The magnetic coupling used here normally causes a relative large torque loss. Besides 

the increased ratio of torque generated by the slag and torque losses, the modification 

of magnetic coupling might be considered. 
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under a reducing atmosphere (with protective gas Ar/4%H2). Before the viscosity 

measurement, the flow temperature was obtained by the hot stage microscope. 

 

Fig. 3.5. Calibration and validation of viscometer 

It should be pointed out that the equipment constant C0 is dependent on temperature, 

due to the fact that the dimension of the crucible and spindle does not remain constant 

due to thermal expansion. Therefore, the equipment constant C0 determined at room 

temperature normally cannot be applied at the high temperature. 

Due to high-temperature measurement, deviation of slag composition is also paid 

attention to. The oxidation of spindle and crucible, for example, results in a change of 

slag composition. Evaporation of alkali oxides also causes an obvious composition 

deviation, especially at high temperature. Another source of experimental error is the 

atmosphere, which can seriously influence the oxidation state of transition metal 

elements, such as iron. 
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4 Modelling 

In the first part of this section, a new viscosity model is firstly developed for pure oxides 

and binary systems, and then is extended to multicomponent systems without Al2O3 and 

further with Al2O3. Finally, the new model is extended to describe the viscosity of 

systems containing FeO and Fe2O3. In the second part of this section, a brief 

description of the optimization procedure for the model parameters is given. 

4.1 Model description 

The viscosity of a Newtonian fluid is caused by the internal fluid friction, which is related 

to the momentum transfer between species (i.e. atoms, molecules, or ions), as well as 

the inter-species forces (i.e. interatomic forces, intermolecular forces, and interionic 

forces). In view of viscosity mechanism, the viscosity is not only dependent on the size 

and shape of species, but also on the interaction forces. Therefore, the structure of 

species involved should be taken into account to study the dependences of viscosity on 

temperature and composition. In the current viscosity model, the viscosity is linked to 

the type and distribution of species, as well as the connectivity of species. 

The Arrhenius-like models are capable of describing the temperature dependence of 

viscosity, which can be expressed as 

η = A∗ ∙ Tn ∙ exp �
Eη

R ∙ T
�                                                                                                                   (4.1) 

where: η is the viscosity; T is the absolute temperature; Eη is the activation energy for 

viscous flow; R is the gas constant; A* and n are constants. Zhang and Jahanshahi 

stated that the performances of the Arrhenius-like models are similar in describing the 

temperature dependence of viscosity [65]. To simplify the model, the constant n is zero 

in the current viscosity model. Moreover, Eq. (4.1) can be transformed to the logarithmic 

form. 

ln η = A + 1000 ∙ B/T                (4.2) 



Modelling 

58 

where: A= ln A* 

 B= Eη/(1000·R) 

Such Arrhenius-like models can effectively calculate the viscosity of a system, which 

consists of only one species, due to no dependence of the viscosity on composition. A 

real challenge is now to calculate the viscosity of a multicomponent melt, which consists 

of various species. The structural dependence of viscosity should be taken into account. 

4.1.1 Structural dependence of viscosity 

The basic structural units of silicate melts are silica tetrahedra, which can further form a 

chain structure, a ring structure, or a network structure. As an example, in SiO2–CaO 

melts the structural change with respect to CaO content is presented in Table 4.1. 

Table 4.1. Structural change with respect to CaO content in SiO2–CaO melts 

CaO, mol% Structure features 

XCaO≤12 3-dimensional network in the form of [Si
n
O

3n
]
–2n

 
 

12<XCaO≤33 Anion complexes in the form of [Si
n·r

O
n·(2r+1)

]
–2n

 
 

33<XCaO≤50 Ring structure in the form of [Si
n
O

3n
]
–2n

 
 

50<XCaO≤67 Chain structure in the form of [Si
n
O

3n+1
]
–2(n+1)

 
 

67<XCaO≤75 Chain structure and monomer [SiO
4
]
4–

 and O
2–

 
 

XCaO>75 Monomer [SiO
4
]
4–

 and O
2–
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It is seen from Table 4.1 that with increasing CaO content the silica structure tends to 

be simpler and smaller, from 3-dimensional network structure, to ring-chain complexes, 

then further to ring structure and chain structure, finally to silica tetrahedra. It should be 

pointed out that all these structural units here are only dominant in a range of defined 

CaO content. Actually, these structural units coexist in dynamic equilibrium with each 

other. The slag structure has a significant influence on the viscosity. Such a structural 

change from 3-dimensional network structure to silica tetrahedra causes a decrease in 

viscosity. As seen from Fig. 4.1, with increasing content of CaO the viscosity decreases 

at temperatures of 1600oC and 1700oC. This indicates that a greater degree of 

polymerization (larger silica structural units) results in a higher viscosity. 

 

Fig. 4.1. Viscosity of the system SiO2–CaO at temperatures of 1600oC and 1700oC 
[91] 

One simple experiment was carried out to prove this idea. As Fig. 4.2 shows, with 

increasing concentration of PVP (a kind of polymer) the viscosity increases at different 

temperatures from 301 K to 353 K. It is found that addition of the PVP to the water leads 

to a linear increase in viscosity at the beginning but a sharper increase when the 

concentration of PVP is above 5%. This change in relationship between viscosity and 

concentration of PVP could be caused by the behavior of the molecules in the solution. 



Modelling 

60 

With increasing concentration of PVP the separate individual polymer chains 

interconnect with each other and thereby form larger structural units (see Fig. 4.2), 

which cause a dramatic increased viscosity. 

In fact, the logarithmic viscosity (in Pa•s) of molten SiO2-based binary systems can span 

over 14 orders of magnitude as a function of silica composition, in which a non-linear 

relationship between viscosity and composition occurs. The internal structure of molten 

slag should be taken into account to well describe the composition dependence of 

viscosity. 

 

Fig. 4.2. Viscosity of polyvinylpyrrolidone solution of various concentrations at 
different temperatures [92] 

 

4.1.2 Common structural base between the viscosity and Gibbs energy 

To describe the structural change in a multicomponent melt consisting of various 

species, the type of species needs to be determined firstly. Aune et al. revealed that the 

viscosity and Gibbs energy have a common structural base [93]. From the experimental 
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viscosities, common species can be obtained by taking the second derivative of the 

logarithmic viscosity with respect to composition. 

 

Fig. 4.3. Second derivative of ln (η) with respect to mole fraction of SiO2 at 
temperatures of 1950oC, 2000oC, and 2050oC in the system SiO2–Al2O3 

As shown in Fig. 4.3, the minimum points of the lines 1950oC, 2000oC, and 2050oC 

correspond to the silica mole fractions 0.37, 0.40, and 0.37, respectively. The average 

value of the silica mole fractions 0.38 is close to the value of 0.4 corresponding to a 

liquid component (species) Al6Si2O13, which was introduced for slag using the modified 

associate species model. On the other hand, this component relates to the solid 

compound Al6Si2O13 (=3Al2O3·2SiO2, mullite) which was first identified by Bowen and 

Greig [94] in the phase diagram of the binary system SiO2–Al2O3. With the same 

method, the common species CaSiO3 and Na2Si2O5 are obtained for the systems SiO2–

CaO and SiO2–Na2O, respectively, as seen from Figs. 4.4 and 4.5. It is found that not 

all necessary common species can be identified by taking the second derivative of the 

logarithmic viscosity with respect to composition, which might be caused by the lack of 

experimental data covering the whole range of compositions. Nevertheless, it has been 

clearly indicated that a common structural base arises between the viscosity and Gibbs 
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energy and furthermore the viscosity of high temperature melts can be appropriately 

described by coupling the Gibbs energy and viscosity [93]. 

 

Fig. 4.4. Second derivative of ln (η) with respect to mole fraction of SiO2 at 
temperatures of 1600oC, 1700oC, and 1800oC in the system SiO2–CaO 

 

Fig. 4.5. Second derivative of ln (η) with respect to mole fraction of SiO2 at 
temperatures of 1300oC, 1400oC, and 1500oC in the system SiO2–Na2O 
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4.1.3 Description of the Gibbs energy using the modified associate species 
model 

Since the viscosity and Gibbs energy have the same structural base, the type of species 

can be determined from the Gibbs energy. The modified associate species model, used 

by Besmann and Spear [95] and applied for the slag relevant oxide systems [96–100], is 

employed to describe the Gibbs energy of the liquid phase, which can be expressed by 

Eq. (4.3). 

G = � Xi ∙ Gi
0 + R ∙ T ∙� Xi ∙ ln Xi + Gex

ii

                                                                                    (4.3) 

where: subscript i represents i-th associate species in solution; Xi is the mole fraction; 

Gi
0 is the Gibbs energy of the pure i-th associate species; R is the gas constant, T is the 

absolute temperature; Gex  is the excess Gibbs energy to summarize all other 

contributions to the Gibbs energy except for the entropy contribution, which can be 

expressed by the following equation according to the Redlich-Kister polynomial 

relationship. 

Gex = ��Xi ∙ Xj� Lij
(k)

nij

k=0i<j

(Xi − Xj)k                                                                                            (4.4) 

where: Lij
(k) is the interaction coefficient between corresponding i-th and j-th associate 

species, which is given by 

Lij
(k) = Aij

(k) + Bij
(k) ∙ T + Cij

(k) ∙ T ∙ ln T + Dij
(k) ∙ T2+…                                                                     (4.5) 

where: Aij
(k), Bij

(k), Cij
(k), Dij

(k) etc. are the interaction parameters. In general, it is sufficient 

to consider the first two terms to describe the change in Gibbs energy. 

Using this modified associate species model and optimized thermodynamic parameters, 

a good agreement in terms of phase diagrams and activities is achieved. For example, 

the phase diagram of the binary system SiO2–Al2O3, as shown in Fig. 4.7, is reproduced 
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very well. Also, the reproduction of liquidus surface in the ternary system SiO2–Al2O3–

CaO is performed very well, as presented in Fig. 4.6. 

 
(a) [101] 

 
(b) [102] 

Fig. 4.6. Accordance of the phase diagram of the system SiO2–Al2O3–CaO between 
experimental points (a) and model predictions (b) 
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Fig. 4.7. Phase diagram of the system SiO2–Al2O3 [98] 

 

4.1.4 Linking the viscosity of slag to its structure 

Since the Gibbs energy for the slag is well described with the modified associate 

species model, in which each associate species represents one type of stoichiometric 

species, the associate species can be considered to be reasonable for the common 

structural base. It should be pointed out that each associate species employed in the 

modified associate species model is expressed with the formula that contains a total of 

two non-oxygen atoms allowing equal weighting of each associate species with regard 

to its entropic contribution in the ideal mixing term [95], as shown in Table 4.2. 

The modified associate species model can also give a reliable distribution of associate 

species, which is consistent with the experimental Qn species distribution. From Fig. 4.9, 

the associate species distribution is in good agreement with the Qn species distribution 

[103–105] obtained from NMR and Raman spectra for the system SiO2–Na2O, in which 
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the species Q2, Q3, and Q4 correspond to the associate species Na2SiO3, Na2Si2O5, and 

SiO2, respectively. 

Table 4.2. Definition of associate species and structural units for pure oxides and binary 
systems 

Compounds Associate species Structural units 

SiO2 Si2O4 SiO2 

Al2O3 Al2O3 AlO1.5 

CaO Ca2O2 CaO 

MgO Mg2O2 MgO 

Na2O Na2O NaO0.5 

K2O K2O KO0.5 

Al6Si2O13 
1
4
·Al6Si2O13 Al3SiO6.5 

CaSiO3 CaSiO3 CaSiO3 

Ca2SiO4 
2
3
·Ca2SiO4 Ca2SiO4 

MgSiO3 MgSiO3 MgSiO3 

Mg2SiO4 
2
3
·Mg2SiO4 Mg2SiO4 

Na4SiO4 
2
5
·Na4SiO4 Na4SiO4 

Na2SiO3 
2
3
·Na2SiO3 Na2SiO3 

Na2Si2O5 
1
2
·Na2 Si2O5 NaSiO2.5 

K2SiO3 
2
3
·K2SiO3 K2SiO3 

K2Si2O5 
1
2
·K2Si2O5 KSiO2.5 

K2Si4O9 
1
3
·K2Si4O9 K0.5SiO2.25 

CaAl2O4 
2
3
·CaAl2O4 Ca0.5AlO2 

MgAl2O4 
2
3
·MgAl2O4 Mg0.5AlO2 

NaAlO2 NaAlO2 NaAlO2 

KAlO2 KAlO2 KAlO2 
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The associate species distribution gives a good base to represent the internal structure 

of the slag. It is noted that the associate species are independent molecular-like 

complexes, which are not stable substances in melts but nevertheless in dynamic 

equilibrium with each other. Each associate species represents one kind of structural 

unit. Fig. 4.8 illustrates the structure of the associate species CaSiO3, as well as its 

contour. 

 

Fig. 4.8. Structural representation of the associate species CaSiO3 [106] 

The slag structure, therefore, at some level can be described with the associate species 

distribution. As shown in Fig. 4.9, the species Na4SiO4, instead of a silica network 

structure, forms at the beginning by adding SiO2 to pure Na2O at a temperature of 

1200oC. When the mole fraction of SiO2 reaches 0.25, the species Na2SiO3 starts to 

form. Then, the formation of the species Na2Si2O5 and SiO2 occurs when the mole 

fraction of SiO2 is approaching 1. Each species is dominant in a range of defined 

composition. For example, the species Na2Si2O5 prevails in the range from 0.55 to 0.8 

mole fraction of silica. For the fully liquid systems SiO2–CaO and SiO2–CaO–Na2O the 

structural change represented with the distribution of associate species is also shown in 

Figs. 4.10 and 4.11, respectively. 
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Fig. 4.9. Normalized distribution of associate species for the system SiO2–Na2O 

 

Fig. 4.10. Normalized distribution of associate species in the fully liquid system SiO2–
CaO at 2800oC 
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Fig. 4.11. Normalized distribution of associate species in the fully liquid system SiO2–
CaO–Na2O at 2000oC and 0.50 mole fraction SiO2 

However, it is not sufficient to describe the dependence of viscosity on structure using 

only the associate species distribution due to the fact that the associate species 

themselves are not sensitive to their own connectivity. In a pure silica melt, for example, 

the structure is described with only one associate species SiO2. In fact, the pure silica 

melt consists of various silica clusters [28, 107], which can be related to the connectivity 

of the associate species SiO2. A higher degree of connectivity results in a larger 

structural unit, and therefore an increased viscosity. 

The connectivity of each associate species can be reflected by the degree of 

polymerization reaction. In principle, all potential polymerizations should be considered 

to describe the structural change with respect to temperature and composition. However, 

this introduces a high number of model parameters and increases the computing time. 

In the current viscosity model, the main polymerizations are abstracted as silica 

polymerizations due to the fact that the polymerizations occur mainly through linking 

silica tetrahedra. Furthermore, not all silica polymerizations have a significant 

contribution to the viscosity. Only when the size of a silica cluster which results from 

silica polymerization reaches a critical value [77], the viscosity can dramatically increase. 
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It is also noted that the silica polymerization is independent of the nature of the silicate 

melt, reported by Zaitsev and Mogutnov [108]. 

4.1.5 Viscosity of the pure oxides and binary systems 

The viscosity of the system consisting of various species, therefore, can be described 

with two parts: an ideal viscosity part and an excess viscosity part. The ideal viscosity 

part is based on the assumption that every associate species is a discrete structural unit 

without any polymerization. As listed in Table 4.2, the discrete structural units are 

expressed with the formula that contains only one reference atom (marked in bold), 

which has the same composition as the associate species. To simplify the formula of 

the discrete structural unit, a simple stoichiometry as shown in the column of 

compounds in Table 4.2 is used hereafter. In the framework of the discrete structural 

units, the sizes of all associate species involved are at a comparable scale, i.e. the 

monomer-like scale. This kind of associate species is described as monomeric 

associate species and the viscosity contributed from this scale is defined as the ideal 

viscosity part. Whereas the viscosity contributed from higher scales is defined as the 

excess part of viscosity, which results from the critical silica polymerizations that have 

significant contributions to the viscosity. In the SiO2-based binary systems, the excess 

viscosity part can be described by relying on two common critical silica clusters, i.e. 

(SiO2)n1  and (SiO2)n2 , which are products of the self-polymerization of silica. 

Consequently, the viscosity is calculated with Eq. (4.6). 

ln η = ln ηideal + ln ηexcess 

        = (∑ Xi ∙ ln ηii ) + (ln ηSiO2−pol.),               (4.6) 

where: ln ηi = Ai + Bi T⁄ , 

ln ηSiO2−pol. = ∑ (A(SiO2)nj
+ B(SiO2)nj

T⁄ ) ∙ (XSiO2
nj )j ,  

j = 1, 2. 

ηideal and ηexcess are the ideal viscosity part and the excess viscosity part respectively; 

Xi  is the mole fraction of the monomeric associate species i; ηi  is the viscosity 
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contribution from the monomeric associate species i; ηSiO2−pol. is the excess viscosity 

part resulting from the critical silica polymerizations; nj  is the integer coefficient that 

relates to a particular degree of polymerization; Ai  and Bi  are the temperature and 

composition independent constants respectively for the ideal viscosity part; A(SiO2)nj
 and 

B(SiO2)nj
 are the temperature and composition independent constants respectively for 

the excess viscosity part; T is the absolute temperature; XSiO2
nj  is the weighting factor 

indicating the relative contribution of the excess viscosity part. The weighting factor is 

derived from the mole fraction of the critical silica cluster. In view of chemical equilibrium, 

there is a dynamic equilibrium between the monomeric associate species SiO2 and the 

critical silica cluster (SiO2)nj, as shown in Eq. (4.7). 

njSiO2 = (SiO2)nj                 (4.7) 

The mole fraction of the critical silica cluster, therefore, can be calculated by the mole 

fraction of the monomeric associate species SiO2, as shown in Eq. (4.8). 

X(SiO2)nj
= Knj ∙ XSiO2

nj                  (4.8) 

where: X(SiO2)nj
 is the mole fraction of the critical silica cluster (SiO2)nj , Knj  is an 

equilibrium constant for a particular degree of polymerization. Here, the mole fraction in 

place of activity is used to calculate the mole fraction of the critical silica cluster. To 

simplify the equation to estimate the excess viscosity part, the equilibrium constant Knj 

is implicitly incorporated into the model parameters A(SiO2)nj
 and B(SiO2)nj

. Moreover, a 

possible dependence of Knj on temperature is ignored. 

4.1.6 Viscosity of the multicomponent systems without Al2O3 

In the current model the viscosity is linked to the type and distribution of species, as well 

as the connectivity of species. With the same principle, the model can be extended to 

describe the viscosity of multicomponent systems. For multicomponent systems, the 

monomeric associate species used for the description of the slag structure may contain 
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some ternary associate species besides the monomeric associate species for the pure 

oxides and binary systems. In the ternary system SiO2–MgO–K2O two ternary associate 

species K2SiMgO4 and K2Si5MgO12 are employed to describe the structural dependence 

of the viscosity, while no ternary associate species are required for the ternary system 

SiO2–MgO–CaO. The viscosity of the ternary system SiO2–MgO–CaO, in consequence, 

can be directly extrapolated from the binary systems SiO2–MgO and SiO2–CaO, in 

which the optimized model parameters for the pure oxides and binary systems remain 

constant. 

In the multicomponent systems without Al2O3, four ternary associate species 

Na2Si6Ca3O16, K2SiCaO4, K2SiMgO4, and K2Si5MgO12 are employed for the description 

of the slag structure, and the remaining monomeric associate species are identical to 

those used in the pure oxides and binary systems. The sizes of the four ternary 

associate species are subjected to the monomer-like scale, which behave like the other 

monomeric associate species, such as CaSiO3 and Na2Si2O5. Their viscosity 

contribution can be effectively described in the framework of the ideal viscosity part. 

Therefore, the viscosity of the multicomponent systems without Al2O3 can be calculated 

with Eq. (4.6), i.e. the model developed for pure oxides and binary systems. 

4.1.7 Viscosity of the Al2O3-containing multicomponent systems 

In the Al2O3-containing multicomponent systems, three kinds of Al3+-containing 

associate species, as listed in Table 4.3, are employed to describe the Al3+-induced 

structural change. These associate species indicate the different structural roles of Al3+ 

depending on composition and temperature and are in dynamic equilibrium with each 

other. For the type of non-tetrahedra, Al3+ plays the role of a network modifier. When 

Al3+ is charge-compensated by Ca2+, Mg2+, Na+, or K+ and forms a quasi-tetrahedron, 

Al3+ behaves as a network former. Although the Al3+-based quasi-tetrahedra CaAl2O4, 

MgAl2O4, NaAlO2, KAlO2, and Ca3Al10Na4O20 behave like silica tetrahedra, these quasi-

tetrahedra themselves are not capable of forming large network structures, which is 

indirectly proved by the magnitude of the viscosity of the Al2O3-containing binary 

systems. 
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Table 4.3. The Al3+-containing associate species and structural units 

Type of structures Compounds Associate species Structural units 

Non-tetrahedra 

Al2O3 Al2O3 AlO1.5 

Al6Si2O13 
1
4
·Al6Si2O13 Al3SiO6.5 

Na2Al4O7 
1
3
·Na2Al4O7 Na0.5AlO1.75 

K2Al4O7 
1
3
·K2Al4O7 K0.5AlO1.75 

Al3+-based quasi-tetrahedra 

CaAl2O4 
2
3
·CaAl2O4 Ca0.5AlO2 

MgAl2O4 
2
3
·MgAl2O4 Mg0.5AlO2 

NaAlO2 NaAlO2 NaAlO2 

KAlO2 KAlO2 KAlO2 

Ca3Al10Na4O20 
2
17

·Ca3Al10Na4O20 Ca0.3AlNa0.4O2 

Al3+-based quasi-tetrahedra 
bonded with SiO2 tetrahedra 

CaSi2Al2O8 
2
5
·CaSi2Al2O8 Ca0.5SiAlO4 

Mg2Si5Al4O18 
2
11

·Mg2Si5Al4O18 Mg0.4SiAl0.8O3.6 

NaSiAlO4 
2
3
·NaSiAlO4 NaSiAlO4 

NaSi3AlO8 
2
5
·NaSi3AlO8 Na1/3SiAl1/3O8/3 

KSiAlO4 
2
3
·KSiAlO4 KSiAlO4 

KSi2AlO6 
1
2
·KSi2AlO6 K0.5SiAl0.5O3 

 

Fig. 4.12 shows that the experimental data [109–111] are well reproduced with the 

model developed for pure oxides and binary systems. It can also be seen from this 

figure that the logarithmic viscosities of the systems SiO2–CaO and Al2O3–CaO are 4.7 

and –1.6 respectively at 1700oC for a constant content (0.87 mole fraction) of 

tetrahedral structural units (SiO2 and CaAl2O4 for the systems SiO2–CaO and Al2O3–

CaO, respectively) corresponding to the maximum of the CaAl2O4 species at this 

temperature, Fig. 4.12(c). That is, at this condition the absolute viscosity value of the 

system SiO2–CaO is about 540 times larger than that of the system Al2O3–CaO, which 

implies that the polymerization of the quasi-tetrahedron CaAl2O4 is very limited 
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compared to the polymerization of the tetrahedron SiO2. Nevertheless, when SiO2 is 

present, the Al3+-based quasi-tetrahedra can easily interconnect with the silica network 

structure, and hence form larger structural units, whose sizes are not within the 

monomer-like scale. These resulting larger structural units, in general, cause a 

significant increase in viscosity. Thus, the viscosity contributed from higher scales 

cannot be described with only two common critical silica clusters. 

  
(a) viscosity of the system Al2O3–CaO at 
1700oC 

(b) viscosity of the system SiO2–CaO at 
1700oC 

  
(c) associate species distribution of the 
system Al2O3–CaO at 1700oC 

(d) associate species distribution of the 
system SiO2–CaO at 1700oC 

Fig. 4.12. Viscosity comparison of the systems Al2O3–CaO and SiO2–CaO at 1700oC 
for the same concentration of the tetrahedral structural units 
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To effectively describe the excess viscosity part for the Al2O3-containing 

multicomponent systems, two kinds of the polymerization are introduced, which are 

described as self- and inter-polymerization. It is assumed that both the Al3+-based 

quasi-tetrahedra and silica tetrahedra can self-polymerize. Due to the fact that the silica 

polymerization is independent of the nature of the silicate melt, the self-polymerization 

of silica tetrahedra is already described with two common critical silica clusters. Thus, 

the remaining self-polymerization is mainly caused by the Al3+-based quasi-tetrahedra. 

As Fig. 4.12 implies, the degree of the self-polymerization for only Al3+-based quasi-

tetrahedra is very small and can be ignored. However, the presence of silica causes an 

increased degree of self-polymerization of the Al3+-based quasi-tetrahedra, which is 

described by making use of the silicon-aluminium based ternary associate species as 

listed in Table 4.3. Nevertheless, not all potential degrees of self-polymerization of each 

associate species involved are introduced. Similar to the treatment of silica 

polymerization, here only one critical self-polymerization of each associate species 

involved is employed to describe the excess viscosity part resulting from the self-

polymerization of the Al3+-based quasi-tetrahedra that bond with the silica tetrahedra. 

Therefore, the excess viscosity part caused by the self-polymerization is given by 

ln ηself−pol. = ∑ (A(SiO2)nj
+ B(SiO2)nj

T⁄ ) ∙ (XSiO2
nj )j   

                      +∑ (A(Si−Al)k + B(Si−Al)k T⁄ ) ∙ (X(Si−Al)k
nk )k ,              (4.9) 

where: j = 1,2.  

 k = 1,2,3… 

(Si − Al)k: the silicon-aluminium based ternary associate species, 

nk: the integer coefficient that relates to a particular degree of self-polymerization. 

Besides the self-polymerization, the Al3+-based quasi-tetrahedra can inter-polymerize 

with the silica tetrahedra. During the inter-polymerization, the Al3+-based quasi-

tetrahedra interconnect with the silica network structures, and thereby give a sharp 
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increase in viscosity because of the formation of larger silica network structures. The 

Al3+-based quasi-tetrahedra that link to the silica network structure are described by 

relying on the silicon-aluminium based ternary associate species. Similar to the 

treatment of the self-polymerization, only one critical inter-polymerization for each 

associate species involved is employed to describe the excess viscosity part resulting 

from the inter-polymerization. Therefore, the excess viscosity part caused by the inter-

polymerization is given by 

ln ηinter−pol. = ∑ (A(Si−Al)m + B(Si−Al)m T⁄ ) ∙ (X(Si−Al)m ∙ XSiO2
nm )m ,             (4.10) 

where: m = 1,2,3 … 

(Si − Al)m: the silicon-aluminium based ternary associate species, 

nm : the integer coefficient that relates to a particular degree of inter-

polymerization. 

Combining Eq. (4.9) and Eq. (4.10) the excess viscosity part for the Al2O3-containing 

multicomponent systems is given by 

ln ηexcess = ln ηself−pol. + ln ηinter−pol. 

                   = ∑ (A(SiO2)nj
+ B(SiO2)nj

T⁄ ) ∙ (XSiO2
nj )j               (4.11) 

                   +∑ (A(Si−Al)k + B(Si−Al)k T⁄ ) ∙ (X(Si−Al)k
nk )k   

                   +∑ (A(Si−Al)m + B(Si−Al)m T⁄ ) ∙ (X(Si−Al)m ∙ XSiO2
nm )m   

Hence, the viscosity of the Al2O3-containing multicomponent systems is described with 

Eq. (4.6), where the ln ηexcess term is replaced with Eq. (4.11). 

4.1.8 Viscosity of the FeO/Fe2O3-containing systems 

In the FeO/Fe2O3-containing systems, one challenge is to describe the redox reaction of 

Fe2+ and Fe3+. The redox reaction of Fe2+ and Fe3+ as a function of temperature, 
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composition and partial pressure of oxygen can be well described by way of the 

associate species distribution, which is calculated by using a completely self-consistent 

thermodynamic dataset. For example, the ferrous-ferric ratio for the system Fe2O3–CaO 

is displayed by the associate species distribution, as seen from Fig. 4.13. It is noted that 

the ferrous-ferric ratio is dependent on temperature, composition and partial pressure of 

oxygen. 

  

  
Fig. 4.13. The associate species distribution in the system Fe2O3–CaO 

When modelling the viscosity of the FeO/Fe2O3-containing systems, another challenge 

arises due to the fact that Fe2+ behaves as a network modifier whereas Fe3+ plays the 

role of an amphoteric. For description of the Fe2+/Fe3+-induced structural change in the 

system SiO2–Al2O3–CaO–MgO–Na2O–K2O–FeO–Fe2O3, 14 Fe-containing associate 
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species are employed, as listed in Table 4.4. The structural role of each associate 

species is clearly indicated. For instance, the associate species CaFe2O4, MgFe2O4, 

NaFeO2, and KFeO2 presenting Fe3+-based quasi-tetrahedra behave as network 

formers, in which Fe3+ is charge-compensated by Ca2+, Mg2+, Na+, or K+. Moreover, not 

all Fe3+ behave as network formers. The associate species Fe2O3 represents the 

structural role of a network modifier. It should be pointed out that all these Fe-containing 

species are in dynamic equilibrium with each other and also with the other associate 

species already employed for the system SiO2–Al2O3–CaO–MgO–Na2O–K2O. 

Table 4.4. The Fe-containing associate species and structural units 

Structural role of Fe2+/Fe3+ Compounds Associate species Structural units 

Network modifiers 

FeO Fe2O2 FeO 

Fe2O3 Fe2O3 FeO1.5 

FeNa2O2 
2
3
·FeNa2O2 FeNa2O2 

FeSiO3 FeSiO3 FeSiO3 

Fe2SiO4 
2
3
·Fe2SiO4 Fe2SiO4 

FeSi2CaO6 
1
2
·FeSi2CaO6 Fe0.5SiCa0.5O3 

FeSi2MgO6 
1
2
·FeSi2MgO6 Fe0.5SiMg0.5O3 

FeSiNa2O4 
1
2
·FeSiNa2O4 FeSiNa2O4 

Charge compensators for 
Al3+ 

FeAl2O4 
2
3
·FeAl2O4 Fe0.5AlO2 

Fe2Si5Al4O18 
2
11

·Fe2Si5Al4O18 Fe0.4SiAl0.8O3.6 

Network formers 

CaFe2O4 
2
3
·CaFe2O4 Ca0.5FeO2 

MgFe2O4 
2
3
·MgFe2O4 Mg0.5FeO2 

NaFeO2 NaFeO2 NaFeO2 

KFeO2 KFeO2 KFeO2 

 

Since the redox reaction of Fe2+ and Fe3+ as well as their structural role are properly 

described, the viscosity of the FeO/Fe2O3-containing systems can be described using 

the associate species distribution as well as a proper connectivity of the associate 



ln
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For optimization of the model parameters, the first step is to collect the experimental 

data available in the literature. The existing experimental data used in this thesis are 

mainly from the SciGlass database [112], which contains more than 268000 oxide 

glasses and melts. For the system SiO2–Al2O3–CaO–MgO–Na2O–K2O–FeO–Fe2O3, 

among the 254 subsystems 109 subsystems have experimental data available in the 

literature. As an example, the summary of experimental data for pure oxides and binary 

systems in the system SiO2–Al2O3–CaO–MgO–Na2O–K2O is listed in Table 4.5. 

Table 4.5. Summary of experimental data used for pure oxides and binary systems in 
the system SiO2–Al2O3–CaO–MgO–Na2O–K2O 

System No. of literaturea No. of total data No. of reliable datab 

SiO2 64 1418 239 
Al2O3 7 58 36 
SiO2–Al2O3 9 203 73 
SiO2–CaO 34 518 308 
SiO2–MgO 6 93 56 
SiO2–Na2O 92 2264 688 
SiO2–K2O 26 590 166 
Al2O3–CaO 22 285 136 

aMostly extracted from SciGlass database 
bReferences in this thesis only refer to data used in the graphs. 

 

The reliability of the existing experimental data should be paid considerable attention to. 

In general, the error sources of viscosity measurement at high temperature are 

described as the composition, temperature, atmosphere, phase, and measuring method. 

The molten slag, for example, is easily contaminated by crucible or sensor materials. In 

terms of its temperature, the results obtained by thermocouples have higher precision 

than those using optical pyrometers. The atmosphere during the measurement can 

seriously influence the oxidation state of transition metal elements, such as iron. The 

presence of solid phases can dramatically increase the viscosity of the slag. Moreover, 

the result is subjected to the measuring method itself, because of its own systematic 

error. In order to select reliable experimental data, the experimental data are carefully 
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analyzed and comprehensively compared with each other. The principles of this step 

are as follows: 

  
Fig. 4.15. Comparison of the experimental data before and after selection in the system 

SiO2–CaO at 0.50 mole fraction SiO2 

 

  
Fig. 4.16. Comparison of the experimental data before and after selection in the system 

SiO2–CaO–MgO at 0.40 mole fraction SiO2 and 0.37 mole fraction CaO 

 The experimental data of solid and liquid mixtures should be excluded firstly since 

the current model is designed for the fully liquid system. The thermodynamic 

database, developed by Yazhenskikh et al. [96–100], is employed to calculate the 

melting temperature. 
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 Comparisons of existing experimental data (such as viscosities [13, 113–124] for 

the systems SiO2–CaO and SiO2–CaO–MgO) are performed by using a 

temperature-viscosity chart at identical composition, as shown in Figs. 4.15 and 

4.16. The reliable experimental points are determined by two features: they have 

the same trend like lying on one line and they are given by at least two authors. 

Those experimental points with large deviation from the line are considered to be 

unreliable. Concerning the experimental points given by only one author, they are 

considered to be unverifiable. 

 In addition, another principle should be pointed out. If one author offered both 

reliable and unreliable experimental data, all the experimental data from this author 

are excluded. If the unverifiable experimental data come from a trustable author, 

they would also be thought of as reliable experimental data. 

The next step is to employ the ChemSheet module to calculate the concentration of 

associate species for the corresponding reliable experimental data, followed by 

optimization of model parameters, which is performed by Excel solver or Matlab solver. 

The average absolute value of difference between experimental data and model 

predictions is employed to be a criterion for judging the optimization performance. The 

ideal result is that average absolute values are equal to zero for all systems studied. 

Due to the relative reliability and imbalance of experimental data, for example 2113 

experimental data points for the system SiO2–Al2O3–CaO while only 36 for the system 

Al2O3, the step by step optimization approach from lower order systems to higher order 

systems is not the best strategy for the current optimization. Since the viscosities of 

lower order systems, such as MgO, can be determined by way of extrapolation of 

corresponding higher order systems, such as SiO2–MgO, Al2O3–MgO or CaO–MgO, the 

influences of experimental data and extrapolation of other related systems on the 

optimization of model parameters are assumed to be equal. Therefore, a better strategy 

is to optimize model parameters at the same time for all related systems, which is 

implemented by ideal point approach, as explained as follows. 
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 To obtain ideal point for each system. Ideal points are the best fitting results, i.e. the 

smallest average absolute values fi0 that can be obtained by changing all related 

model parameters of the current model, which is given by 

fi0 =
1
N
∙��ln ηj,cal − ln ηj,exp�
N

j=1

                                                                                                (4.12) 

where: subscript i represents slag system i; N is the number of reliable experimental 

points in each slag system and subscript j represents j-th experimental point; ηj,cal is 

the calculated viscosity value; ηj,exp is the experimental viscosity value. 

 To construct the evaluation function, as shown in Eq. (4.13). 

f(x) = �� ei ∙ (fi(x) − fi0)2
N

i=1

                                                                                                     (4.13) 

where: x represents all model parameters (x here is a matrix); fi(x) is the expression 

of average absolute value for system i; ei is the weighting factor depending on the 

amount of the reliable experimental data points. 

 To minimize the evaluation function f(x) to achieve the best fitting results. 

The step followed is to evaluate the model parameters optimized. If a satisfactory 

agreement between experimental data and model prediction is achieved, the 

optimization process will end. Otherwise, the optimization loop, as shown in Fig. 4.14, 

starts to work and will not stop until the best fitting results are obtained by the current 

model. During the optimization loop, sometimes the model parameters should be 

changed by hand since the evaluation function f(x) in this case may be not global 

convergent and there exist local minima, and therefore the results obtained are possibly 

local minima. In addition, some boundary conditions such as the magnitude and 

sequence of the activation energy of viscous flow for model parameters are required. 
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For the FeO/Fe2O3-containing systems, the partial pressure of oxygen is required due to 

the redox reaction of FeO and Fe2O3, besides the composition and temperature. 

However, many experimental data from the SciGlass database are lacking clear partial 

pressure of oxygen, even without giving any information of it. In order to maximize the 

use of existing experimental data, some indirect information below is employed to 

estimate the partial pressure of oxygen. 

 Fe2+ ∑ Fe⁄  

 Fe3+ ∑ Fe⁄  

 Reducing atmosphere 

 Oxidizing atmosphere 

 Neutral atmosphere 

The ferrous-ferric ratio, which is obtained by Mössbauer spectra, is equal to the ratio of 

Fe2+- and Fe3+-based associate species in the melts, in which the change of ferrous-

ferric ratio during the quenching process is ignored. Using the ferrous-ferric ratio, the 

partial pressure of oxygen can be reversely obtained. Concerning the reducing, 

oxidizing and neutral atmospheres, they are treated as variables. Then, a certain range 

of partial pressure of oxygen is set for each atmosphere during the optimization. By way 

of example, for the reducing and neutral atmospheres the partial pressure of oxygen is 

assumed to be limited in the range of 10–12 and 10–6, whereas the partial pressure of 

oxygen is assumed to be within the range of 10–6 and 0.21 for the oxidizing atmosphere. 

With this boundary condition, the so called optimized partial pressure of oxygen is 

obtained. Furthermore, the partial pressure of oxygen controlled with CO/CO2 is also 

handled by the same method. 

Due to the fact that the partial pressure of oxygen is treated as a variable, the associate 

species distribution of a molten slag at a certain temperature is not constant any more. 

Therefore, the recalculation of the associate species distribution is required during the 

optimization process, as shown in Fig. 4.17. This modified optimization process is much 

more time consuming than the original one. 
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(a) constant partial pressure of oxygen 

 
(b) variable partial pressure of oxygen 

Fig. 4.17. The optimization process without and with the consideration of variable 
partial pressure of oxygen 
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5 Results and discussion 

Based on the reliable experimental data, the model parameters for pure oxides and 

binary systems in the system SiO2–Al2O3–CaO–MgO–Na2O–K2O have been assessed, 

as listed in Table 5.1. 

Table 5.1. Optimized model parameters as well as predicted theoretical viscosity and 
activation energy of viscous flow for pure oxides and binary systems 

Structural unit i 
Model parameters Predicted theoretical viscosity and 

activation energy of viscous flow 
𝐀𝐢 𝐁𝐢 𝛈𝐓→∞, Pa•s 𝐄𝛈, kJ/mol 

SiO2 –11.8412 26.0077 7.20×10–6 216 
(SiO2)6 –7.4709 33.3646 2.48×10–4c 308c 
(SiO2)109 –0.0002 9.8636 9.98×10–1d 820d 
Al2O3 –7.9870 11.2921 3.40×10–4 94 
CaO –12.2950 16.5938 4.57×10–6 138 
MgO –12.3174 18.2211 4.47×10–6 151 
Na2O –10.1825 7.1809 3.78×10–5 60 
K2O –13.3501 10.1628 1.59×10–6 84 
Al6Si2O13 –12.6651 36.4609 3.16×10–6 303 
CaSiO3 –13.0951 21.0209 2.06×10–6 175 
Ca2SiO4 –11.2518 16.4112 1.30×10–5 136 
MgSiO3 –15.1634 25.5891 2.60×10–7 213 
Mg2SiO4 –8.2317 11.2175 2.66×10–4 93 
Na4SiO4 –11.0638 10.7120 1.57×10–5 89 
Na2SiO3 –14.0539 18.0752 7.88×10–7 150 
Na2Si2O5 –9.4354 18.0752 7.98×10–5 150 
K2SiO3 –10.3290 12.1253 3.27×10–5 101 
K2Si2O5 –6.8797 19.5232 1.03×10–3 162 
K2Si4O9 –12.0645 19.5232 5.76×10–6 162 
CaAl2O4 –14.5789 26.0077 4.66×10–7 216 
MgAl2O4 –14.5789 26.0077 4.66×10–7 216 
NaAlO2 –12.0605 26.0077 5.78×10–6 216 
KAlO2 –11.8412 26.0077 7.20×10–6 216 

cThe equilibrium constant for the silica cluster (SiO2)6 is assumed to be 0.9. 
dThe equilibrium constant for the silica cluster (SiO2)109 is assumed to be 0.1. 
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It is noted that the model parameters of the pure oxides CaO, MgO, Na2O, and K2O 

needed to be assessed by way of extrapolation of corresponding binary systems, since 

there are no experimental data available in the literature resulting from the very high 

melting temperature of CaO and MgO respectively, as well as the very high reactivity of 

Na2O and K2O. Also, the model parameters of the binary systems Al2O3–MgO, Al2O–

Na2O, and Al2O3–K2O were assessed by the same methodology. 

As Table 5.1 indicates, each structural unit i has only one set of model parameters Ai 

and Bi, unlike the Hurst model requiring different sets of model parameters for different 

conditions. Very few model parameters are required for the current viscosity model, 

compared to the Quasi-chemical viscosity model. Moreover, the model parameters have 

a clear physico-chemical meaning. The model parameters Ai correspond to the 

theoretical viscosities when the temperature is approaching infinity, whereas the model 

parameters Bi are related to the activation energy for viscous flow. The theoretical 

viscosity (denoted with ηT→∞) as well as the activation energy for viscous flow, as listed 

in Table 5.1, are recalculated from the model parameters Ai and Bi. It is easy to 

understand that the values of model parameters Ai and Bi are negative and positive 

respectively and moreover, the values of model parameters Bi exhibit the same order of 

magnitude. In contrast, in the model of Kim et al. [79] the values of model parameters 

indicating the activation energy for viscous flow are not always positive and also of a 

very different order of magnitude. 

It is seen from Table 5.1, that the values of model parameters Bi for SiO2, CaAl2O4, 

MgAl2O4, NaAlO2, and KAlO2 are equal, which can be accepted because of their similar 

structure (quasi-tetrahedron) at the monomer-like scale. That is why the species 

CaAl2O4 and NaAlO2 are assumed to have the same effect on the viscosity as the 

species SiO2 in the model of Kim et al. [79]. However, in the current model the species 

SiO2, CaAl2O4, MgAl2O4, NaAlO2, and KAlO2 have different viscosity contributions, 

which are displayed by the model parameters Ai according to the bond strength. 

Another aspect should be pointed out that the model parameters Bi for SiO2, (SiO2)6 and 

(SiO2)109 cannot be directly compared. The model parameter Bi for SiO2 is indeed 

related to the activation energy, whereas the model parameters Bi for (SiO2)6 and 
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(SiO2)109 are related to the activation energy as well as the equilibrium constant Knj(see 

Eq. (4.8)). The value of the equilibrium constant Knj should be lower than 1 for the silica 

clusters (SiO2)6 and (SiO2)109, which implies that the corresponding activation energies 

could be greater than that of SiO2. For reasonably assumed values of Kn1=0.9 and 

Kn2=0.1, the activation energies for the silica clusters (SiO2)6 and (SiO2)109 are 308 

kJ/mol and 820 kJ/mol respectively, which are greater than the activation energy of 216 

kJ/mol for SiO2. The corresponding predicted theoretical viscosities follow the order: 

(SiO2)109 > (SiO2)6 > SiO2 when the temperature is approaching infinity. 

Concerning the model parameters Bi for Na2SiO3 and Na2Si2O5, the activation energy of 

the species Na2Si2O5, in principle, should be larger than that of the species Na2SiO3 

because of the higher degree of polymerization of the species Na2Si2O5. However, they 

tend to be equal during the numerical optimization process, which can be accepted at 

the monomer-like scale. The same holds for K2Si2O5 and K2Si4O9. 

Table 5.2. Optimized model parameters as well as predicted theoretical viscosity and 
activation energy of viscous flow for ternary or higher order systemse 

Structural unit i 
Model parameters Predicted theoretical viscosity and 

activation energy of viscous flow 

𝐀𝐢 𝐁𝐢 𝛈𝐓→∞, Pa•s 𝐄𝛈, kJ/mol 

Na2Si6Ca3O16 –2.600 17.027 7.43×10–02 141.56 

K2SiCaO4 –3.000 11.000 4.98×10–02 91.45 

K2SiMgO4 –35.598 10.996 3.47×10–16 91.42 

K2Si5MgO12 –2.675 20.756 6.89×10–02 172.57 

Ca3Al10Na4O20 –3.001 10.999 4.97×10–02 91.45 

CaSi2Al2O8 –19.299 34.848 4.15×10–09 289.73 

Mg2Si5Al4O18 –15.123 31.382 2.70×10–07 260.91 

NaSiAlO4 –3.209 10.967 4.04×10–02 91.18 

NaSi3AlO8 –6.569 11.456 1.40×10–03 95.25 

KSiAlO4 –2.999 11.001 4.98×10–02 91.46 

KSi2AlO6 –6.670 17.759 1.27×10–03 147.65 
eThe model parameters for the self- and inter-polymerization are not included here. 
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The model parameters for ternary or higher order systems in the system SiO2–Al2O3–

CaO–MgO–Na2O–K2O are also given, as listed in Table 5.2. More than 4500 

experimental data are selected to assess the model parameters for the ternary 

associate species. Nevertheless, very few experimental data are given for some ternary 

systems such as SiO2–CaO–K2O and SiO2–MgO–K2O, and even no experimental data 

are available for the ternary system Al2O3–CaO–Na2O. In consequence, the model 

parameters for the ternary associate species such as K2SiCaO4, K2SiMgO4, K2Si5MgO12, 

and Ca3Al10Na4O20 are assessed by way of extrapolation of the corresponding higher 

order systems. The model parameters introduced for the multicomponent systems have 

the same physico-chemical meaning as for the pure oxides and binary systems. 

As Table 5.2 shows, the values of the model parameters Bi for KSi2AlO6 and KSiAlO4 

follow the order: KSi2AlO6 > KSiAlO4, which is reasonable from the view of the degree of 

polymerization. The same holds for NaSi3AlO8 and NaSiAlO4 as well as for K2Si5MgO12 

and K2SiMgO4. It is noted that the activation energy of the associate species CaSi2Al2O8 

is greater than that of the associate species Mg2Si5Al4O18, which could be caused by 

the fact that the associate species Mg2Si5Al4O18 is less stable than the associate 

species CaSi2Al2O8 [125]. It should be pointed out that the influence of the associate 

species K2SiCaO4 and Ca3Al10Na4O20 on the viscosity is small, and thereby the 

corresponding model parameters Ai and Bi seem to be not changed during the 

optimization process. 

For FeO/Fe2O3-containing systems, the model parameters are still being assessed, 

whose values are currently listed in Appendix. Nevertheless, the first results of viscosity 

are also presented in this section. 

To demonstrate the performance of the current viscosity model, below for the 

representative systems the calculated viscosities are compared to the experimental 

data. Moreover, the viscosity extrapolated to the range below the melting temperature is 

presented with dotted lines and the liquid immiscibility in the systems such as SiO2–

CaO and SiO2–MgO is marked with dashed lines. 
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5.1 Pure oxides 

Due to no composition dependence of viscosity for the pure oxides, the viscosity of pure 

oxides can be calculated with the Arrhenius model, as shown in Eq. (4.2). The 

monomeric associate species are capable of describing the temperature-induced 

structural change for the pure oxides Al2O3, CaO, MgO, Na2O, and K2O, whereas the 

temperature-induced structural change for the SiO2 is described with the coexisting 

monomeric associate species SiO2 and two common critical silica clusters. 

5.1.1 SiO2 

Many experimental data of molten silica have been reported, due to its technological 

importance for high temperature processes including liquid phases. As Fig. 5.1 shows, 

the experimental data [13, 126–130] are reproduced very well with the current viscosity 

model and the viscosity decreases with increasing temperature. 

 

Fig. 5.1. Comparison between experimental data and calculated data for SiO2 

It can be seen that the viscosity of molten pure silica is very high. For example, the 

viscosity is above 300 Pa•s even at 2500oC and the viscosity can reach up to more than 

5 million Pa•s when the temperature falls down to the melting temperature. A possible 
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reason for this very high viscosity is the silica network structure. Although the silica 

network structure collapses due to very high temperature, more than one structural unit 

still coexists [131]. This structural feature can be reflected by the coexisting monomeric 

associate species SiO2 and two common critical silica clusters in the current viscosity 

model. Hereby, these two common critical silica clusters are obtained by fitting 

experimental data of both pure molten silica and all SiO2-based binary systems. As 

shown in Table 5.1, one of the critical silica clusters corresponds to a 6-membered, 3-

dimensionally structural unit, which is consistent with most experimental and theoretical 

structural data [132]. The number of silica tetrahedra of the other critical silica cluster is 

109, which has not direct experimental support but nevertheless has the same order of 

magnitude of that employed in the molecular dynamics simulation [133]. 

5.1.2 Al2O3 

Compared to pure silica, the amount of existing experimental data of molten alumina is 

very small due to its high melting temperature. The experimental data given by Elyutin 

et al. [134], Urbain [135], and Zubarev et al. [136] are compared with the calculated data, 

as shown in Fig. 5.2. 

 

Fig. 5.2. Comparison between experimental data and calculated data for Al2O3 
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Although Elyutin et al. and Urbain used a rotational viscometer to measure the viscosity 

and Zubarev et al. employed the fiber elongation method, their experimental data can 

be reproduced within the experimental error with the current viscosity model. For the 

molten alumina, only one monomeric associate species Al2O3 is required to represent 

the structure of molten alumina. The model parameter B of the monomeric associate 

species Al2O3 can be recalculated to the activation energy for viscous flow, whose value 

of 94 kJ/mol is close to the value of 110 kJ/mol reported by Urbain [135]. 

5.1.3 CaO, MgO, Na2O, and K2O 

The viscosities of pure oxides CaO, MgO, Na2O, and K2O are predicted, in which the 

model parameters are assessed by way of extrapolation of corresponding binary 

systems. Using the assessed model parameters, the temperature-induced viscosity 

behaviors, as shown in Fig. 5.3, are reasonable from the view of the bond strength 

between cations and oxygen ions. In general, a stronger bond strength results in a 

higher viscosity [65]. The bond strength for these oxides follows the order: SiO2 > Al2O3 > 

MgO > CaO >Na2O > K2O, which is consistent with the viscosity order indicated in Fig. 
5.3. 

 

Fig. 5.3. Viscosities of the pure oxides SiO2, Al2O3, CaO, MgO, Na2O, and K2O 
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5.2 Binary systems 

In the SiO2-based binary systems, a challenging viscosity behavior is described by 

Avramov et al. [74] as the so called lubricant effect, in which the network modifiers play 

the role of lubricants allowing silica clusters to glide more easily with each other. Thus, 

the viscosity of molten silica drastically decreases when a small amount of network 

modifiers, such as Al2O3, CaO, MgO, Na2O, and K2O, is added into the pure silica melt. 

To describe the lubricant effect, the composition-induced structural change is taken into 

account. In the current viscosity model, such structural change can be described by the 

monomeric associate species and two common critical silica clusters. Based on the 

effective description of the slag structure, the viscosity of the SiO2-based binary systems 

can be described by Eq. (4.6). Moreover, the viscosity extension from SiO2-based 

binary systems to the pure SiO2 works very well, unlike the Zhang-Jahanshahi model 

[65], in which the viscosity values extrapolated from SiO2-based binary systems to the 

pure SiO2 are different. 

5.2.1 SiO2–Al2O3 and Al2O3–CaO 

Based on three monomeric associate species SiO2, Al2O3, and Al6Si2O13 and two 

common critical silica clusters (SiO2)6 and (SiO2)109, the experimental data [13, 110, 128, 

134] of the binary system SiO2–Al2O3 can be reproduced very well for temperatures 

from 1800oC to 2200oC, as shown in Fig. 5.4. The viscosity values extrapolated from 

the binary system SiO2–Al2O3 to the pure oxides SiO2 and Al2O3 also work well. 

Moreover, the lubricant effect can be predicted very well. It is noted that only 3 mol% 

Al2O3, at 1800 oC, lead to a decrease of the viscosity from ca. 1.3×106 Pa•s to ca. 

4.6×103 Pa•s. 

Without introduction of the two common critical silica clusters as mentioned above, the 

lubricant effect cannot be described, as shown in Fig. 5.5. The red double-headed 

arrows indicate the difference in viscosity calculated with the original Arrhenius model 

and the current model. In the original Arrhenius model the magnitude of the viscosity 

extrapolated from the binary system SiO2–Al2O3 to the pure oxide SiO2 is much smaller 
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than that of pure oxide SiO2. This indicates that the variation of viscosity is not linear to 

the concentration of the associate species SiO2. 

 

Fig. 5.4. Comparison between experimental data and calculated data in the system 
SiO2–Al2O3 

 

Fig. 5.5. The effect of self-polymerization of SiO2 on viscosity 
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In the binary system SiO2–Al2O3, Al2O3 behaves as a network modifier, whereas it can 

play the role of a network former in the binary systems Al2O3–CaO. Fig. 5.6 indicates 

that the viscosity maxima occur somewhere in the middle, because of the amphoteric or 

charge compensation effect. This effect can be successfully described using the 

monomeric associate species CaAl2O4, in which Al3+ associates with Ca2+. A monomeric 

associate species CaAl2O4 behaves like a monomeric associate species SiO2. The 

corresponding activation energy of the monomeric associate species CaAl2O4 is the 

same as that of the monomeric associate species SiO2, as given in Table 5.1. 

 

Fig. 5.6. Comparison between experimental data and calculated data in the system 
Al2O3–CaO 

The experimental data [109–111, 137–139] presented in Fig. 5.6 are fitted well with the 

current viscosity model. It can be seen that the peak of the viscosity maximum is slightly 

shifted towards the Al2O3-rich side with increasing temperature. The viscosity maximum 

is more pronounced when the temperature decreases. That means that the amphoteric 

or charge compensation effect tends to be weak with increasing temperature. Moreover, 

the nearer to the fully charge compensated composition, the larger spacing of the 

viscosity isotherms. 
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5.2.2 Al2O3–MgO, Al2O3–Na2O, and Al2O3–K2O 

Similar to the system Al2O3–CaO, the binary systems Al2O3–MgO, Al2O3–Na2O, and 

Al2O3–K2O also have the amphoteric or charge compensation effect, which is described 

with the monomeric associate species MgAl2O4, NaAlO2, and KAlO2, respectively. 

  

 
Fig. 5.7. Charge compensation effect in the systems Al2O3–MgO, Al2O3–Na2O, and 

Al2O3–K2O 

Due to the different coulombic forces between the cations and oxygen anions, the 

charge compensation effect induced viscosity behavior varies, as shown in Fig. 5.7. It is 

pointed out that in the binary system Al2O3–K2O a smooth viscosity behavior around the 

fully charge compensated composition is transformed into a wedge-shaped behavior 

when the temperature is lowered from 2200oC to 1800oC. On the one hand, the unusual 
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wedge-shaped behavior is reasonable in the framework of the current model. As seen 

from Fig. 5.8, the concentration of the species KAlO2 is almost 1 at the fully charge 

compensated composition. This indicates that at the temperature of 1800oC the system 

Al2O3–K2O almost consists of quasi-tetrahedra KAlO2, and therefore the viscosity 

sharply decreases when the mole fraction Al2O3/(Al2O3+K2O) is approaching 0 or 1 from 

0.5, which is similar to the lubricant effect demonstrated in the SiO2-based binary 

systems. On the other hand, an unusual (also wedge-shaped) distribution of the 

associate KAlO2 is found at 1800oC, whereas the distribution of the associate NaAlO2 is 

normal at the same temperature. It is noted that the distribution of the associate NaAlO2 

can also be a wedged shape when the temperature is lower than 700oC. This indicates 

that the shape of the distribution of the associate NaAlO2 is dependent on temperature. 

The same is true for the associate KAlO2. 

  
Fig. 5.8. Normalized distribution of associate species in the systems Al2O3–K2O and 

Al2O3–Na2O 

 

5.2.3 SiO2–CaO and SiO2–MgO 

Unlike Al2O3, CaO and MgO always behave as network modifiers, which break the 

covalent bonds between silicon ions and oxygen ions and lead to a decrease in 

viscosity. In the binary system SiO2–CaO, the CaO-induced rupture of the covalent 

bonds between silicon ions and oxygen ions can be described with the monomeric 
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associate species CaSiO3 and Ca2SiO4, and therefore the induced decrease of the 

viscosity can be described with the current viscosity model. Fig. 5.9 shows that the 

calculated data are in good agreement with the experimental data [13, 110, 113, 115, 

128, 140–144] within the experimental errors, at temperatures from 1500oC to 1900oC. 

It is noted that the viscosity prediction in the liquid immiscibility is marked with dashed 

lines, although the viscosity behavior in this range is assumed to be the same as that of 

a homogenous liquid phase. Moreover, the lubricant effect can be predicted for this 

system. 

 

Fig. 5.9. Comparison between experimental data and calculated data in the system 
SiO2–CaO 

In terms of the binary system SiO2–MgO, the experimental data [13, 28, 113, 145] are 

also reproduced well with the current viscosity model, as shown in Fig. 5.10. To 

describe the MgO-induced structural change, the monomeric associate species MgSiO3 

and Mg2SiO4 are employed, which are the same type of the monomeric associate 

species used in the binary system SiO2–CaO. 
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Fig. 5.10. Comparison between experimental data and calculated data in the system 
SiO2–MgO 

 

5.2.4 SiO2–Na2O and SiO2–K2O 

The viscosities of the systems containing Na2O and K2O are more complex, compared 

to the systems SiO2–Al2O3, SiO2–CaO, and SiO2–MgO. As Fig. 5.11 shows, the 

viscosity dramatically decreases when small amounts of alkali oxides are added to silica 

because of the lubricant effect. Then, it further gradually decreases until somewhere in 

the middle, followed by another strong decrease of the viscosity, the so called weak 

lubricant effect, due to the possible ring structures [79]. The Na2O-induced structural 

change can be presented with the monomeric associate species Na4SiO4, Na2SiO3, and 

Na2Si2O5. As a result, the experimental data [115, 146–156] are reproduced very well 

with the current viscosity model. 
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Fig. 5.11. Comparison between experimental data and calculated data in the system 
SiO2–Na2O 

 

Fig. 5.12. Comparison between experimental data and calculated data in the system 
SiO2–K2O 
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The viscosity behavior of the binary system SiO2–K2O is similar to that of the binary 

system SiO2–Na2O, as given in Fig. 5.12. The monomeric associate species K2SiO3, 

K2Si2O5, and K2Si4O9, employed for describing the K2O-induced structural change, 

however, are not exactly the same type as that in the system SiO2–Na2O. Using these 

monomeric associate species, the calculated data are in good agreement with the 

experimental data [148, 151, 153, 154, 157–161] at different temperatures from 1000oC 

to 1400oC. 

 
 

(a) Na4SiO4 (b) formation of a ring structure 

Fig. 5.13. Formation of ring structure for the monomeric associate species 

It is noted that the so called weak lubricant effect of the system SiO2–K2O is stronger 

than that of the system SiO2–Na2O. This possibly results from the monomeric associate 

species Na4SiO4 behaving as a network modifier, like Na2O, which has no possibility to 

polymerize, to further form a larger structural unit, as shown in Fig. 5.13(a). The other 

types of the monomeric associate species employed for describing Na2O- and K2O-

induced structural change can possibly further form ring structures, such as the 

monomeric associate species Na2SiO3, as shown in Fig. 5.13(b). 

5.3 Multicomponent systems without Al2O3 

The viscosity of the multicomponent systems without Al2O3 is described with the model 

developed for the pure oxides and binary systems, in which four ternary associate 

species Na2Si6Ca3O16, K2SiCaO4, K2SiMgO4, and K2Si5MgO12 are employed to describe 
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the structural changes induced by the different network modifiers. Four representative 

systems SiO2–CaO–MgO, SiO2–CaO–Na2O, SiO2–Na2O–K2O, and SiO2–CaO–MgO–

Na2O–K2O are presented in this section. The influences of the network modifiers CaO, 

MgO, Na2O, and K2O on the viscosity are compared. The viscosity behavior when 

substituting one network modifier for another at constant temperatures or for constant 

SiO2 contents is described. Moreover, the viscosities extrapolated from lower order 

systems to corresponding higher order systems are compared to the experimental data. 

5.3.1 SiO2–CaO–MgO 

For the system SiO2–CaO–MgO, no ternary associate species are employed and 

instead the composition-induced structural change is effectively described by relying on 

the monomeric associate species that are employed for the pure oxides and binary 

systems. As a result, the calculated viscosities agree well with the experimental data [13, 

28, 113, 121, 123, 140, 141, 162–164], as shown in Fig. 5.14. 

 

Fig. 5.14. Comparison between experimental data and calculated data in the system 
SiO2–CaO–MgO at 1400oC, 1500oC, 1600oC, 1700oC, and 1800oC for the 
SiO2 content of 0.50 mole fraction 



Results and discussion 

104 

It is noted that the substitution of CaO for MgO for a constant SiO2 content of 0.5 mole 

fraction causes a gradual decrease in viscosity at temperatures from 1400oC to 1800oC. 

This indicates that CaO has a greater ability to decrease the viscosity than MgO in the 

system SiO2–CaO–MgO because of the weaker bond strength of CaO. In contrast, in 

the Urbain model the network modifiers CaO and MgO are assumed to have the same 

effect on the viscosity [54]. The different effects of CaO and MgO on the viscosity are 

also presented in Fig. 5.15. At a constant temperature of 1600oC, the viscosity 

gradually decreases when substituting CaO for MgO for different SiO2 contents ranging 

from 0.30 mole fraction to 0.70. 

 

Fig. 5.15. Comparison between experimental data and calculated data in the system 
SiO2–CaO–MgO at 1600oC for the SiO2 contents of 0.30, 0.40, 0.50, 0.60, 
and 0.70 mole fraction 

In addition, it is demonstrated that the extension of viscosities from the binary systems 

SiO2–CaO and SiO2–MgO to the ternary system SiO2–CaO–MgO works well, which 

implies that the current model is a self-consistent model. In contrast, in the Zhang-

Jahanshahi model the extrapolated viscosities involve self-conflicting values [65]. 
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5.3.2 SiO2–CaO–Na2O 

For the description of the composition-induced structural change in the system SiO2–

CaO–Na2O, the ternary associate species Na2Si6Ca3O16 is employed besides the 

monomeric associate species for the pure oxides and binary systems. Fig. 5.16 

presents that the calculated viscosities are in good agreement with the experimental 

data given by Shvaiko et al. [165], Washburn et al. [166], Cheng and Fan [153], and Kim 

[154]. For a constant SiO2 content of 0.75 mole fraction, the viscosity increases when 

replacing Na2O with CaO at temperatures from 1100oC to 1400oC. It is noted that the 

alkali oxide Na2O results in a sharper decrease in viscosity than alkaline earth oxides 

CaO and MgO, which is caused by the lower bond strength of Na2O. 

 

Fig. 5.16. Comparison between experimental data and calculated data in the system 
SiO2–CaO–Na2O at 1100oC, 1200oC, 1300oC, and 1400oC for the SiO2 
content of 0.75 mole fraction 

At a constant temperature of 1300oC, the substitution of CaO for Na2O leads to a 

gradual increase in viscosity for different SiO2 contents from 0.30 mole fraction to 0.70, 

as shown in Fig. 5.17. With the current model the calculated viscosities satisfactorily fit 

with the experimental data [166–170]. It is noted that the slope of the viscosity-
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composition curves obviously varies for different SiO2 contents in the system SiO2–

CaO–Na2O, which is not that case in the system SiO2–CaO–MgO. This implies that with 

the change of the SiO2 content, the magnitude of the viscosity change differs between 

systems containing the alkaline earth oxides and systems containing alkali oxides. 

 

Fig. 5.17. Comparison between experimental data and calculated data in the system 
SiO2–CaO–Na2O at 1300oC for the SiO2 contents of 0.30, 0.40, 0.50, 0.60, 
and 0.70 mole fraction 

 

5.3.3 SiO2–Na2O–K2O 

In contrast to the ternary system SiO2–CaO–Na2O, no ternary associate species for the 

ternary system SiO2–Na2O–K2O are used to describe the composition-induced 

structural change, which is effectively described with the monomeric associate species 

employed for the pure oxides and binary systems. The alkali oxide K2O plays a similar 

structural role for viscosity as Na2O, which also decreases the viscosity more 

dramatically than the alkaline earth oxides CaO and MgO. According to the order of the 

bond strength (Na2O > K2O), the viscosity should follow the order: SiO2–Na2O > SiO2–

K2O. Nevertheless, the substitution of Na2O for K2O does not always lead to an 
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increase in viscosity, which could be caused by the formation of the ring structures as 

described for the systems SiO2–Na2O and SiO2–K2O. 

 

Fig. 5.18. Comparison between experimental data and calculated data in the system 
SiO2–Na2O–K2O at 1100oC, 1200oC, 1300oC, and 1400oC for the SiO2 
content of 0.75 mole fraction 

As Fig. 5.18 shows, the viscosity decreases when replacing K2O with Na2O for a 

constant SiO2 content of 0.75 mole fraction at temperatures from 1100oC to 1400oC. It is 

noted that a good performance is given for the extension of viscosities from the binary 

systems SiO2–Na2O and SiO2–K2O to the ternary system SiO2–Na2O–K2O, in which the 

experimental data [153, 154, 171] are well reproduced. 
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Fig. 5.19. Comparison between experimental data and calculated data in the system 
SiO2–Na2O–K2O at 1300oC for the SiO2 contents of 0.300, 0.400, 0.500, 
0.600, 0.667, 0.743, 0.800, and 0.900 mole fraction 

As seen from Fig. 5.19, the trend of the viscosity with respect to mole fraction 

Na2O/(Na2O+K2O) varies for different SiO2 contents from 0.3 mole fraction to 0.9 at a 

constant temperature of 1300oC. The slope of the viscosity-composition curves shifts 

from positive to negative when the SiO2 content is lowered from 0.9 mole fraction to 0.8, 

or from negative to positive when the SiO2 content is lowered from 0.6 mole fraction to 

0.5. This implies that the K2O-induced ring structures have higher degrees of 

polymerization than those induced by Na2O for the SiO2 contents from 0.6 mole fraction 

to 0.8, which thereby results in a higher contribution of the viscosity for K2O. With the 

current model, the experimental data [147, 151, 160, 171] in the same range of the SiO2 

contents (see Fig. 5.19) are well reproduced. 

5.3.4 SiO2–CaO–MgO–Na2O–K2O 

When the model is extended to the quinary system SiO2–CaO–MgO–Na2O–K2O, the 

combined effect of different oxides CaO, MgO, Na2O, and K2O on the viscosity is taken 

into account. To describe the structural change induced by these four oxides, four 
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ternary associate species Na2Si6Ca3O16, K2SiCaO4, K2SiMgO4, and K2Si5MgO12 are 

employed. As shown in Fig. 5.20, the experimental data [172] are reproduced well with 

the current viscosity model, which indicates that the model parameters optimized for 

corresponding lower order systems are reasonable. It is noted that the viscosity 

decreases for all mass ratios Na2O/K2O with increasing temperature. Moreover, the 

viscosity decreases with increasing mass ratio Na2O/K2O at the same temperature, 

which is caused by two potential reasons. One is that the substitution of Na2O for K2O 

leads to a decrease in viscosity for the specific SiO2 contents, which are defined in the 

system SiO2–Na2O–K2O. Another reason is that the content of “free” SiO2, i.e. its mole 

fraction, is not constant but decreases with increasing mass ratio Na2O/K2O. 

 

Fig. 5.20. Comparison between experimental data and calculated data in the system 
SiO2–CaO–MgO–Na2O–K2O for 0.730 mass fraction SiO2, 0.055 mass 
fraction CaO, 0.035 mass fraction MgO as well as 0.20, 2.00, and 3.50 mass 
ratio Na2O/K2O 
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5.4 Multicomponent systems with Al2O3 

When Al2O3 is present, the effect of network modifiers CaO, MgO, Na2O, and K2O on 

the viscosity is different from that in the multicomponent system without Al2O3 due to the 

Al2O3-induced amphoteric or charge compensation effect. For the description of the 

Al2O3-induced structural change, seven Al3+-containing ternary associate species 

CaSi2Al2O8, Mg2Si5Al4O18, NaSiAlO4, KSiAlO4, NaSi3AlO8, KSi2AlO6, and Ca3Al10Na4O20 

are employed representing the structural changes caused by the different network 

modifiers. Eight representative systems SiO2–Al2O3–CaO, SiO2–Al2O3–MgO, SiO2–

Al2O3–Na2O, SiO2–Al2O3–K2O, SiO2–Al2O3–CaO–MgO, SiO2–Al2O3–CaO–Na2O, SiO2–

Al2O3–Na2O–K2O, and SiO2–Al2O3–CaO–MgO–Na2O–K2O are presented in this section. 

The effects of the different network modifiers CaO, MgO, Na2O, and K2O on the Al2O3-

induced viscosity maximum are compared. The position and magnitude of the viscosity 

maximum as a function of composition and temperature are predicted. Moreover, the 

viscosity behavior when replacing Al2O3 with SiO2 for constant contents of the network 

modifiers is predicted and the viscosities extrapolated from lower order systems to 

corresponding higher order systems are compared to the experimental data. 

5.4.1 SiO2–Al2O3–CaO and SiO2–Al2O3–MgO 

For the description of the composition-induced structural change in the system SiO2–

Al2O3–CaO, one ternary associate species CaSi2Al2O8 is used besides the monomeric 

associate species for the pure oxides and binary systems, in which the associate 

species Al2O3, Al6Si2O13, CaAl2O4, and CaSi2Al2O8 are employed to describe the Al3+-

induced structural change. The associate species Al2O3 and Al6Si2O13 behave as 

network modifiers, whereas the associate species CaAl2O4 and CaSi2Al2O8 behave as 

network formers, which are employed to describe the amphoteric or charge 

compensation effect. As seen from Fig. 5.21, the viscosity maximum for the system 

SiO2–Al2O3–CaO is well described for a constant SiO2 content of 0.5 mole fraction at 

temperatures from 1400oC to 2000oC. With the current model, the calculated viscosities 

are in good agreement with experimental data [13, 110, 121, 123, 173–176]. It is found 

that the position of the viscosity maximum is not exactly at the fully charge-
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compensated composition but slightly shifted towards the Al2O3-rich side with increasing 

temperature, which results from the corresponding shift in distribution of the associate 

species involved. Meanwhile, the viscosity maximum tends to be less pronounced due 

to lower stability of the Al3+-based quasi-tetrahedral structures. Moreover, the larger 

spacing of viscosity isotherms occurs when approaching the fully charge-compensated 

composition, which was already observed by Grundy et al. [78]. 

 

Fig. 5.21. Comparison between experimental data and calculated data in the system 
SiO2–Al2O3–CaO at 1400oC, 1600oC, 1800oC, and 2000oC for the SiO2 
content of 0.50 mole fraction 

In addition to the temperature dependence, the Al2O3-induced viscosity maximum is 

dependent on the SiO2 content. As seen from Fig. 5.22, at a constant temperature of 

1600oC, the position of the viscosity maximum varies for different SiO2 contents from 

0.40 mole fraction to 0.75. It is noted that the position of the viscosity maximum shifts 

towards the Al2O3-rich side in the case of the SiO2 content of 0.40 mole fraction. In 

contrast, the position of the viscosity maximum corresponds to the vicinity of the fully 

charge-compensated composition for the SiO2 contents from 0.50 mole fraction to 0.75. 

Moreover, the viscosity maximum tends to be more pronounced when the SiO2 content 
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increases from 0.4 mole fraction to 0.67. With the current model the calculated 

viscosities agree well with the experimental data [13, 110, 141, 142, 174–179]. 

 

Fig. 5.22. Comparison between experimental data and calculated data in the system 
SiO2–Al2O3–CaO at 1600oC for the SiO2 contents of 0.40, 0.50, 0.67, and 
0.75 mole fraction 

The viscosity behavior at the fully charge-compensated composition was investigated 

by many researchers [13, 110, 118, 162, 175, 180, 181], as seen from Fig. 5.23, in 

which the experimental data are well reproduced. This indicates that the change in 

viscosity at the fully charge-compensated composition with respect to composition and 

temperature can be well described with the current model. In contrast, for the 

description of the Al2O3-induced viscosity maximum additional fitting terms related to the 

Al2O3 and network modifiers are used for the Quasi-chemical viscosity model [76], 

whereas additional associates such as CaAl2O4 and NaAlO2 are used for the model 

developed by Grundy et al. [78]. 
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Fig. 5.23. Comparison between experimental data and calculated data in the system 
SiO2–Al2O3–CaO at 1 mole ratio Al2O3/CaO for the SiO2 contents of 0.25, 
0.50, and 0.75 mole fraction 

 

Fig. 5.24. Comparison between experimental data and calculated data in the system 
SiO2–Al2O3–MgO at 1 mole ratio Al2O3/MgO for the SiO2 contents of 0.25, 
0.50, and 0.75 mole fraction 
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In contrast to the system SiO2–Al2O3–CaO, the associate species MgAl2O4 and 

Mg2Si5Al4O18 are used to describe the Al3+-induced charge compensation effect for the 

system SiO2–Al2O3–MgO, in which the associate species MgAl2O4 is the same type of 

the associate species as CaAl2O4, whereas the associate species Mg2Si5Al4O18 is 

different from the associate species CaSi2Al2O8. This indicates that the structural 

change induced by the alkaline earth oxides CaO and MgO differs when they act as 

charge compensators for Al2O3, which could explain the difference of the viscosity 

behavior in the systems SiO2–Al2O3–CaO and SiO2–Al2O3–MgO. With the current model, 

as seen from Fig. 5.24, the viscosities [13, 175, 182] have been well predicted. It is 

noted that for the system SiO2–Al2O3–MgO the magnitude of the viscosity at the fully 

charge-compensated composition is smaller than that for the system SiO2–Al2O3–CaO. 

 

Fig. 5.25. Comparison between experimental data and calculated data in the system 
SiO2–Al2O3–MgO at 1500oC, 1600oC, 1700oC, and 1800oC for the SiO2 
content of 0.50 mole fraction 

Nevertheless, for these two systems the influences of the temperature and SiO2 content 

on the position of the viscosity maximum are similar. As Fig. 5.25 shows, for a constant 

SiO2 content of 0.5 mole fraction the viscosity maximum is slightly shifted towards the 

Al2O3-rich side when the temperature is increased from 1500oC to 1800oC. Fig. 5.26 
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shows that at a constant temperature of 1600oC the viscosity maximum corresponds to 

the vicinity of the fully charge-compensated composition for different SiO2 contents from 

0.45 mole fraction to 0.75. The experimental data [13, 28, 110, 161, 175, 182–186] 

given in Figs. 5.25 and 5.26 are well reproduced with the current model. 

 

Fig. 5.26. Comparison between experimental data and calculated data in the system 
SiO2–Al2O3–MgO at 1600oC for the SiO2 contents of 0.45, 0.50, 0.60, 0.67, 
and 0.75 mole fraction 

 

5.4.2 SiO2–Al2O3–Na2O and SiO2–Al2O3–K2O 

In contrast to the alkaline earth aluminosilicate systems, the alkali aluminosilicate 

systems exhibit more complicated viscosity behavior. To describe the Al3+-induced 

structural change in the system SiO2–Al2O3–Na2O, the associate species Al2O3, 

Al6Si2O13, Na2Al4O7, NaAlO2, NaSiAlO4, and NaSi3AlO8 are employed, in which the 

associate species Al2O3, Al6Si2O13, and Na2Al4O7 behave as network modifiers, 

whereas the associate species NaAlO2, NaSiAlO4, and NaSi3AlO8 play the role of 

network formers. As seen from Fig. 5.27, with the current model the experimental data 

[13, 187–191] are satisfactorily reproduced, although the experimental data involve 
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some deviations, especially for the viscosities at a constant SiO2 content of 0.67 mole 

fraction. It is noted that the viscosity trend obviously varies on the Al2O3-poor side for 

different SiO2 contents, and moreover for constant SiO2 contents the viscosity behavior 

markedly differs between the Al2O3-poor side and the Al2O3-rich side, which is similar to 

the behavior of the activation energy for viscous flow when substituting Al2O3 for Na2O 

[187]. In contrast, such viscosity behavior is not covered by the model of Grundy et al. 

[78]. 

 

Fig. 5.27. Comparison between experimental data and calculated data in the system 
SiO2–Al2O3–Na2O at 1600oC for the SiO2 contents of 0.40, 0.50, 0.60, 0.67, 
0.75, and 0.82 mole fraction 

By relying on the distribution of the associate species involved, the Al2O3-induced 

viscosity maximum is satisfactorily described, in which the predicted position of the 

viscosity maximum tends to correspond to the fully charge-compensated composition 

for different SiO2 contents from 0.60 mole fraction to 0.82, whereas the viscosity 

maximum is shifted to the Al2O3-poor side for the SiO2 content of 0.50 mole fraction and 

to the Al2O3-rich side for the SiO2 content of 0.4 mole fraction, as shown in Fig. 5.27. It 

is noted that the experimental data given by Riebling et al. and Toplis et al. shows an 

obvious shift in position of the viscosity maximum towards the Al2O3-rich side for the 
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Fig. 5.29. Comparison between experimental data and calculated data in the system 
SiO2–Al2O3–Na2O at 1000oC, 1200oC, 1400oC, and 1600oC for the SiO2 
content of 0.67 mole fraction 

In addition, the viscosity behavior at the fully charge-compensated composition as a 

function of the SiO2 content and temperature is presented in Fig. 5.30. The current 

model allows a good performance in reproducing experimental data [13, 120, 180, 187–

189, 191, 193–195], although for the SiO2 content of 0.67 mole fraction there is a small 

deviation at temperatures above 1400oC. 
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Fig. 5.30. Comparison between experimental data and calculated data in the system 
SiO2–Al2O3–Na2O at 1 mole ratio Al2O3/Na2O for the SiO2 contents of 0.50, 
0.60, 0.67, 0.75, and 0.83 mole fraction 

 

Fig. 5.31. Comparison between experimental data and calculated data in the system 
SiO2–Al2O3–K2O at 1 (or 0.06) mole ratio Al2O3/K2O for the SiO2 contents of 
0.55 and 0.75 mole fraction 
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The associate species KSi2AlO6 in place of NaSi3AlO8 is employed to describe the Al3+-

induced structural change for the system SiO2–Al2O3–K2O, in which the remaining 

associate species are the same type of the associate species as employed for the 

system SiO2–Al2O3–Na2O. A limited amount of experimental data for the system SiO2–

Al2O3–K2O is available in the literature and the model parameters are assessed by the 

existing experimental data and also by way of extrapolation from the corresponding 

higher order systems. The current optimized model parameters allow a good agreement 

of the calculated viscosities and existing experimental data [13, 120, 161], and also a 

reasonable prediction of the viscosity in the range where no experimental data are 

available. As Fig. 5.31 shows, at the fully charge-compensated composition, an 

increase in SiO2 content leads to an increased viscosity at the same temperature, 

whereas at the same SiO2 content of 0.55 mole fraction the magnitude of the viscosity 

at the fully charge-compensated composition is larger than that at mole ratio Al2O3/K2O 

of 0.06. 

 

Fig. 5.32. Comparison between experimental data and calculated data in the system 
SiO2–Al2O3–K2O at 1400oC (or 1300oC) for the SiO2 contents of 0.55, 0.60, 
0.65, and 0.70 mole fraction 
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Fig. 5.32 shows the dependence of the position of the viscosity maximum on 

temperature and composition for the system SiO2–Al2O3–K2O. In contrast to the system 

SiO2–Al2O3–Na2O, a viscosity behavior (a smooth stepped shape) on the Al2O3-rich side 

is also presented. The position of the viscosity maximum is slightly shifted towards the 

Al2O3-poor side and is dependent on the SiO2 content. It is noted that on the Al2O3-poor 

side the viscosity-composition curves for the SiO2 contents from 0.60 mole fraction to 

0.70 intersect with each other, which could result from the different ring structures that 

causes the weak lubricant effect in the system SiO2–K2O. This intersection is indicated 

by the experimental data given by Mizoguchi et al. [161], which are well reproduced with 

the current model. It is found that a local viscosity minimum occurs in the Al2O3-rich side 

(near to the fully charge compensated composition) for the SiO2 content of 0.55 mole 

fraction when the temperature is lowered to 1300oC. Such local viscosity minimum was 

observed by Toplis and Dingwell for the system SiO2–Al2O3–CaO [175]. 

 

Fig. 5.33. Comparison between experimental data and calculated data in the system 
SiO2–Al2O3–K2O at 1200oC, 1250oC, 1300oC, 1350oC, and 1400oC for the 
SiO2 content of 0.60 mole fraction 

For the system SiO2–Al2O3–K2O the temperature dependence of the position of the 

viscosity maximum is presented in Fig. 5.33. At the temperatures above 1250oC, the 
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viscosity maximum is located in the Al2O3-poor side for the constant SiO2 content of 

0.60 mole fraction, whereas a viscosity plateau tends to occur when the temperature is 

lowered to 1250oC. When the temperature is further lowered, the viscosity maximum is 

shifted towards the Al2O3-rich side. It is obvious that more experimental data are 

needed to better assess the model parameters for alkali aluminosilicate systems. 

5.4.3 SiO2–Al2O3–CaO–MgO 

For the system SiO2–Al2O3–CaO–MgO, the viscosity is extrapolated from the 

corresponding lower order systems such as SiO2–Al2O3–CaO and SiO2–CaO–MgO, in 

which no additional associate species as well as no additional model parameters are 

introduced. 

 

Fig. 5.34. Comparison between experimental data and calculated data in the system 
SiO2–Al2O3–CaO–MgO at 1400oC, 1500oC, and 1600oC as well as 0.50 mole 
fraction SiO2 and 0.25 mole fraction CaO 

As shown in Fig. 5.34, the experimental data [110, 113, 162, 164, 196] are satisfactorily 

predicted, although a small deviation between the calculated data and the experimental 

data occurs. It is seen that the viscosity maximum does not occur at the ideal 

compositional position (mole fraction Al2O3/(Al2O3+MgO)=1) and the position of the 
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viscosity maximum is shifted from 0.93 mole fraction to 0.91 mole fraction 

Al2O3/(Al2O3+MgO) when the temperature is lowered from 1600oC to 1400oC, which is 

reasonable due to the fact that not all Al3+ are charge-compensated by alkaline earth 

cations Ca2+. 

 

Fig. 5.35. Comparison between experimental data and calculated data in the system 
SiO2–Al2O3–CaO–MgO at 1500oC as well as 0.05 mass fraction MgO and 
0.30, 0.35, 0.40, 0.45, 0.50, 0.55, and 0.60 mass fraction SiO2 

From Fig. 5.35 it can be seen that with the current model the calculated values are in 

good agreement with the experimental data [121–123, 144, 197–200]. It is noted that 

the position of the viscosity maximum is dependent on the mass fraction of SiO2. The 

viscosity maximum is slightly shifted towards the left as the SiO2 content is increased 

from 0.30 mass fraction to 0.50, whereas it is slightly shifted towards the right as the 

SiO2 content is increased from 0.50 mass fraction to 0.60. Moreover, the viscosity 

maximum occurs at the Al2O3-rich side. 

5.4.4 SiO2–Al2O3–CaO–Na2O 

By way of extrapolation from corresponding lower order systems, the viscosity of the 

system SiO2–Al2O3–CaO–Na2O is predicted and the dependence of the viscosity on 
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composition and temperature is well described. As seen from Fig. 5.36, the calculated 

viscosities agree well with the experimental data [167, 180, 201–203]. It is noted that 

the viscosities of the four slags follow the order: slag 1 > slag 2 > slag 3 > slag 4, which 

is caused by the charge compensation effect. This order is consistent with the order of 

the sum of the SiO2 and Al2O3 contents although the amount of the charge 

compensators for Al3+ might be not enough for slag 1. 

 

Fig. 5.36. Comparison between experimental data and calculated data in the system 
SiO2–Al2O3–CaO–Na2O for the SiO2 contents of 0.501, 0.548, 0.644, and 
0.729 mole fraction 

Fig. 5.37 shows the viscosity behavior when substituting SiO2 for Al2O3 for the constant 

contents of CaO and Na2O. The experimental data given by Pavlushkin et al. [204] are 

satisfactorily predicted. It is seen that the viscosity maximum occurs when Al2O3 is 

replaced with SiO2. The viscosity increases at the beginning by substituting SiO2 for the 

excess Al2O3 that is not charge-compensated by CaO or Na2O. Then further substitution 

of SiO2 for Al2O3 leads to not only an increased concentration of SiO2 itself but also an 

increased concentration of network modifiers that originally act as charge compensators 

for Al2O3. As a result, the viscosity maximum occurs during the substitution of SiO2 for 

Al2O3. This kind of the viscosity maximum has been observed for other systems. 
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Riebling found that the substitution of Al2O3 for SiO2 at a constant Na2O content of 0.20 

mole fraction leads to the presence of the viscosity maximum for the system Na2O–

Al2O3–SiO2 [187], whereas the viscosity maximum occurs when replacing SiO2 with 

Al2O3 at different CaO contents of 0.35, 0.40, and 0.45 mole fraction for the system 

CaO–Al2O3–SiO2 [205]. 

 

Fig. 5.37. Comparison between experimental data and calculated data in the system 
SiO2–Al2O3–CaO–Na2O at 1300oC, 1350oC, and 1400oC as well as 0.2115 
mass fraction CaO and 0.0385 mass fraction Na2O 

 

5.4.5 SiO2–Al2O3–Na2O–K2O 

Extending the viscosity calculations to the system SiO2–Al2O3–Na2O–K2O works well. 

As Fig. 5.38 presents, the viscosity behavior at fully charge-compensated composition 

is well described. The viscosities of two slags [13, 206] are well predicted. It is noted 

that the viscosity of slag 6 is greater than that of slag 5 at the same temperature due to 

the fact that the slag 6 contains a higher content of SiO2 and K2O than slag 5, in which 

the Al3+-induced quasi-tetrahedron is more stable when AlO4
5− is charge-compensated 

by K+. 
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Fig. 5.38. Comparison between experimental data and calculated data in the system 
SiO2–Al2O3–Na2O–K2O at 1 mole ratio Al2O3/(Na2O+K2O) for the SiO2 
contents of 0.688 and 0.847 mole fraction 

As shown in Fig. 5.39, when substituting SiO2 for Al2O3 the viscosity maximum appears 

at different temperatures in the range from 1000oC to 1400oC. The experimental data 

[154] are well reproduced. The position of the viscosity maximum occurs in the vicinity 

of the fully charge-compensated composition. This indicates that the substitution of SiO2 

for Al2O3 that behaves as a network former causes a decrease in viscosity. That is, the 

viscosity change resulting from an increased concentration of SiO2 is smaller than that 

resulting from the corresponding decreased concentration of the Al3+-based quasi-

tetrahedra and increased concentration of network modifiers that originally act as 

charge compensators for Al2O3. Comparing the positions of the viscosity maximum as 

shown in Figs. 5.37 and 5.39 indicates that the viscosity contribution induced by the 

charge compensation effect differs depending on the charge compensators for Al2O3. 



Results and discussion 

127 

 

Fig. 5.39. Comparison between experimental data and calculated data in the system 
SiO2–Al2O3–Na2O–K2O at 1000oC, 1200oC, and 1400oC as well as 0.125 
mole fraction Na2O and 0.125 mole fraction K2O 

 

5.4.6 SiO2–Al2O3–CaO–MgO–Na2O–K2O 

When the model is extended to the system SiO2–Al2O3–CaO–MgO–Na2O–K2O, the 

structural change induced by different oxides Al2O3, CaO, MgO, Na2O, and K2O is 

described by the associate species employed for pure oxides, binary systems and 

ternary systems. By way of extrapolation from the corresponding subsystems, the 

viscosity of this senary system is well predicted by the current model. As Fig. 5.40 

shows, the current model allows a good performance in reproducing the experimental 

data [207–209].  

It is seen that the viscosity of three slags follows the order: slag 9 > slag 7 > slag 8, 

which is reasonable when the charge compensation effect is taken into account. 

Although the sum of contents SiO2 and Al2O3 differs little in slag 7 and in slag 8, the 

difference in viscosity is relatively large. It is noted that the excess network modifiers 

that are not required to compensate Al2O3 are alkaline earth oxides for the slag 7, 
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whereas the excess network modifiers for the slag 8 contain more than 50% of alkali 

oxides, due to the fact that the priority of the network modifiers to compensate Al2O3 

follows the order: K2O > Na2O > CaO > MgO [125, 210–212]. 

 

Fig. 5.40. Comparison between experimental data and calculated data in the system 
SiO2–Al2O3–CaO–MgO–Na2O–K2O for the SiO2 contents of 0.605, 0.732, 
and 0.746 mole fraction 

As Fig. 5.41 shows, the substitution of SiO2 for Al2O3 leads to varying viscosity maxima 

for different slags at 1300oC. The viscosities [208, 213] of the slag 10, slag 11, and slag 

12 are satisfactorily reproduced. It is found that the substitution of CaO for Na2O causes 

a right shift in position of the viscosity maximum at constant contents of MgO and K2O. 

The same holds for the substitution of CaO for K2O. Moreover, the substitution of CaO 

for Na2O or K2O results in a decrease in magnitude of the viscosity maximum. To 

present the viscosity behavior when substituting alkaline earth oxides for alkali oxides, 

the slag 13 and slag 14 are designed, which have the same mole ratio Na2O/K2O and 

mole ratio CaO/MgO as the slag 10, respectively. It is noted that the order of the 

viscosities extrapolated to the system Al2O3–CaO–MgO–Na2O–K2O or to the system 

SiO2–CaO–MgO–Na2O–K2O is reasonable, which indicates that the current model is 

self-consistent. 
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Fig. 5.41. Comparison between experimental data and calculated data in the system 
SiO2–Al2O3–CaO–MgO–Na2O–K2O at 1300oC 
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5.5 The FeO/Fe2O3-containing systems 

The presence of FeO/Fe2O3 leads to a more complex viscosity behavior resulting from 

the redox reaction of Fe2+ and Fe3+ as well as the dual structural role. For description of 

the Fe2+/Fe3+-induced structural change in the system SiO2–Al2O3–CaO–MgO–Na2O–

K2O–FeO–Fe2O3, 14 Fe-containing associate species are employed, among which the 

associate species CaFe2O4, MgFe2O4, NaFeO2, and KFeO2 representing Fe3+-based 

quasi-tetrahedra behave as network formers. No ternary associate species are 

employed to describe the Fe3+-induced charge compensation effect. More than 1600 

experimental data points are employed to assess the model parameters, and the 

viscosity in the investigated systems is properly described. The dependence of viscosity 

on partial pressure of oxygen makes it difficult to optimize all the model parameters. Not 

all the model parameters have been optimized so far. Nevertheless, the overall 

performance of the current model is good. The local viscosity maximum in the system 

SiO2-FeO/Fe2O3 is discussed. The Fe3+-induced charge compensation effect is 

presented and is also compared to that induced by Al3+. Moreover, the viscosity 

behavior when replacing Fe2O3 with SiO2 for constant contents of the other network 

modifiers is presented. 

5.5.1 The overall performance of the FeO/Fe2O3-containing systems 

The viscosity of the system SiO2–Al2O3–CaO–FeO, which is of practical significance for 

the coal ashes, is used to demonstrate the performance of the current model in 

describing the viscosity of the FeO/Fe2O3-containing systems. Hurst et al. [61] modified 

the Urbain model to predict the viscosity of such system. It is found that different sets of 

model parameters are required for different contents of FeO, which results in many 

model parameters. Figs. 5.42 and 5.43 show that a good agreement between the 

calculated viscosities and the experimental data [61, 62] is achieved with the current 

model using only one set of model parameters. Therefore, the current model gives a 

better performance than the Hurst model. 
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The viscosity of other multicomponent systems, such as the systems SiO2–CaO–FeO, 

SiO2–MgO–FeO, SiO2–Al2O3–FeO, and SiO2–CaO–MgO–FeO, are also described. It is 

seen from Fig. 5.44 that the experimental data given by Chen et al. [214, 215], Ducret 

and Rankin [216], and JI et al. [217] are satisfactorily reproduced with the current model. 

  

  
Fig. 5.44. Comparison between experimental data and calculated data in the systems 

SiO2–CaO–FeO, SiO2–MgO–FeO, SiO2–Al2O3–FeO, and SiO2–CaO–MgO–
FeO 

It is noted that calculating the viscosity with the current model requires the partial 

pressure of oxygen, besides the composition and temperature. In the case of no clear 

partial pressure of oxygen given, the modified optimization process (see Fig. 4.17) can 

be used to obtain the so called optimized partial pressure of oxygen, with which the 

viscosity can be calculated. As shown in Fig. 5.45, viscosities [218] of the system SiO2–

MgO–K2O–FeO is still properly reproduced even no partial pressure of oxygen is given. 
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Fig. 5.45. Comparison between experimental data and calculated data in the system 
SiO2–MgO–K2O–FeO 

 

5.5.2 Discussion of the local viscosity maximum in the system SiO2–FeO/Fe2O3 

Due to the fact that the structural role of Fe2+ and Fe3+ to viscosity differs, the viscosity 

behavior of FeO/Fe2O3-containing systems is very complicated. The binary system 

SiO2–FeO, for example, involves a controversial viscosity behavior. A local viscosity 

maximum occurs in the low range of SiO2 content, around the fayalite composition 

(Fe2SiO4), which was confirmed by Urbain and Hebd [219], Rontgen et al. [220], 

Shiraishi et al. [221], and Sumita et al. [222]. However, Kucharski et al. [223] and Chen 

et al. [224] did not observe this phenomenon. Actually, the reasons for the local 

viscosity maximum around the fayalite composition are still unclear. Shiraishi et al. 

stated that the presence of the fayalite cluster in the melt results in the local viscosity 

maximum [221], whereas Waseda et al. explained this phenomenon with a combination 

of silicate anion polymerization effect and cation effect [225]. Unfortunately, the viscosity 

behavior of other binary systems such as SiO2–CaO and SiO2–MgO might not support 

such explanations, because there is no analogous viscosity maximum in these binary 
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systems. For example, in the binary system SiO2–CaO a calcium analogue of fayalite 

Ca2SiO4 does not lead to the local viscosity maximum. 

 

Fig. 5.46. Viscosity maximum in the systems Fe2O3–CaO and Fe2O3–Na2O 

To explain the local viscosity maximum in the binary system SiO2–FeO/Fe2O3, two 

points should be taken into account. In the silicate melts, the Fe2+- and Fe3+-based 

species generally coexist. Furthermore, their structural roles to viscosity are different. 

From Fig. 4.13, the Fe3+-based species in the form of CaFe2O4 behaves as a network 

former, which is caused by the Fe3+-induced charge compensation effect. Here, Ca2+ 

charge-compensate Fe3+ in tetrahedral coordination, in which the resulting viscosity 

maximum can be observed in the binary system CaO–Fe2O3 exposed to the air, as 

shown in Fig. 5.46. Compared to the binary system CaO–Fe2O3, the binary system 

Na2O–Fe2O3 shows a much more pronounced viscosity maximum due to a lower 

ionization potential. 

Besides the ions Ca2+ and Na+, the Fe2+, in principle, can also charge-compensate Fe3+ 

in tetrahedral coordination, which possibly causes the above-mentioned local viscosity 

maximum in the binary system SiO2–FeO/Fe2O3. The charge compensation of FeO4
5− 

and Fe2+ depends on the Fe2+/Fe3+ ratio, which is in turn dependent on the pressure, 
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temperature, composition and partial pressure of oxygen. Fig. 5.47 shows the influence 

of temperature, composition and partial pressure of oxygen on the ferrous-ferric ratio in 

the system SiO2–Fe2O3. At a constant composition, for example, the Fe2+/Fe3+ ratio 

increases with increasing temperature or with decreasing partial pressure of oxygen. 

  

  
Fig. 5.47. The associate species distribution in the system SiO2–Fe2O3 

Therefore, the existence of the local viscosity maximum is dependent on the 

composition, temperature, and partial pressure of oxygen. That is why some 

researchers such as Rontgen et al. and Sumita et al. observed the local viscosity 

maximum, whereas some researchers such as Kucharski et al. and Chen et al. did not 

observe it. To describe this local viscosity maximum with current model, an additional 

term (FeO∙SiO2∙Fe2O3) might be needed, in which three associate species FeO, Fe2O3 
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and SiO2 inter-polymerize. The corresponding structural change is that FeO4
5− is charge-

compensated by Fe2+ and forms a Fe3+-based quasi-tetrahedron, which further link to 

the silica network structure and thereby causes a sharp increase in viscosity. 

  

  
Fig. 5.48. The local viscosity maximum in the system SiO2–Fe2O3 

The presence of the predicted viscosity maximum, for example, depends on the 

temperature and partial pressure of oxygen, as shown in Fig. 5.48. It should be pointed 

out that the position of the local viscosity maximum is shifted towards the right of the 

fayalite composition, which may need further optimization of the corresponding model 

parameters. Another promising approach is to introduce new associate species such as 

Fe3O4 (i.e. FeO∙Fe2O3) and Fe3Si2O8 (i.e. FeO∙2SiO2∙Fe2O3) in the modified associate 

species model for the description of liquid solution. 
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5.5.3 Fe2O3-induced charge compensation effect 

With the current model, the charge compensation effect can be described by relying on 

the associate species CaFe2O4, MgFe2O4, NaFeO2, and KFeO2. Fig. 5.49 presents the 

viscosity behavior induced by the charge compensation effect for the binary systems 

Fe2O3–CaO and Fe2O3–Na2O. With the current model, the experimental data given by 

Sumita et al. [222] are properly reproduced. It is seen that a more pronounced viscosity 

maximum is displayed in the system Na2O–Fe2O3 due to a stronger charge 

compensation effect. 

 

Fig. 5.49. The charge compensation effect in the systems Fe2O3–CaO and Fe2O3–
Na2O 

In contrast to the binary systems Fe2O3–Na2O/CaO, the charge compensation effect of 

the ternary systems SiO2–Al2O3–FeO/Fe2O3 is more complicated due to the competition 

of the charge compensators for Al2O3 and Fe2O3. As shown in Fig. 5.50, the 

experimental data given by Chen et al. [214] are well reproduced with the current model. 

At a constant SiO2 content of 0.40 mole fraction, the viscosity maximum occurs when 

replacing FeO with Al2O3 and the viscosity maximum is located in the peraluminous 

region. It is noted that the position of the viscosity maximum is shifted towards the 



Results and discussion 

138 

Al2O3-rich side with increasing temperature. Moreover, the position and magnitude of 

the viscosity maximum are dependent on the partial pressure of oxygen. When the 

partial pressure of oxygen is increased from 1.0×10–10 to 0.21, the position of the 

viscosity maximum is shifted to the Al2O3-rich side and the viscosity maximum is less 

pronounced. 

 

Fig. 5.50. The charge compensation effect in the system SiO2–Al2O3–FeO 

The charge compensation effect induced by Fe2O3 is weaker than that induced by Al2O3. 

As seen from Fig. 5.51, the Fe3+ charge-compensated by K+ can produce a pronounced 

viscosity maximum, whereas the viscosity maximum is less pronounced when Fe3+ is 

charge-compensated by Na+. The same holds for Ca2+ and Mg2+. Another viscosity 

behavior induced by substituting SiO2 for Al2O3 or Fe2O3 demonstrates that the Al2O3 

has a stronger charge compensation effect than Fe2O3 for the same charge 

compensators. 
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Fig. 5.51. The charge compensation effect in the systems SiO2–Fe2O3–Na2O/K2O 

 

Fig. 5.52. The viscosity behavior with the substitution of SiO2 for Fe2O3 in the system 
SiO2–Fe2O3–Na2O–K2O 
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Compared to the viscosity maximum shown in Fig. 5.39, such kind of the viscosity 

maximum does not occur for the system SiO2–Fe2O3–Na2O–K2O when replacing Fe2O3 

with SiO2 (see Fig. 5.52), which is caused by the weak charge compensation effect 

between Fe3+ and K+ or Na+. That is, the viscosity change resulting from an increased 

concentration of SiO2 is always larger than that resulting from the corresponding 

decreased concentration of the Fe3+-based quasi-tetrahedra and increased 

concentration of network modifiers that originally act as charge compensators for Fe2O3. 

Table 5.3. Composition of four synthetic slags (mole fraction) 

Slags SiO2 Al2O3 Fe2O3 CaO 

Slag 15 0.40 0.10 0.00 0.50 
Slag 16 0.40 0.30 0.00 0.30 
Slag 17 0.40 0.15 0.15 0.30 
Slag 18 0.40 0.00 0.30 0.30 

 

To further compare the charge compensation effects induced by Al2O3 and Fe2O3, the 

viscosity of four Al2O3/Fe2O3-containing slags, as listed in Table 5.3, is given by the 

current model. It is seen that at the same temperature the viscosity of these four slags 

follows the order: slag 16 > slag 15 > slag 17 > slag 18, as shown in Fig. 5.53. 

It is easy to understand that the viscosity of slag 16 is greater than that of slag 15 

because of more Al3+ in tetrahedral coordination for slag 16, whereas it is strange that 

the viscosity of slag 17 is smaller than that of slag 15, which might be caused by Fe2O3. 

The redox reaction of Fe3+ of Fe2+ leads to an increased amount of network modifiers in 

the slag melts and thereby the effective concentrations of SiO2 and Al2O3 are decreased. 

Moreover, the Fe2O3-induced charge compensation effect is less pronounced than that 

induced by Al2O3. As a result, the viscosity of slag 17 is smaller than that of slag 15. If 

the composition of slag 17 is changed by replacing all Fe2O3 with FeO, the viscosity of 

slag 17 will be larger than that of slag 15, which is denoted with slag 17’, as shown in 

Fig. 5.53. Because of the weaker charge compensation effect of Fe2O3 as well as the 

redox reaction of Fe3+ and Fe2+, the viscosity of slag 17 is greater than that of slag 18. It 
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is noted that the viscosity spacing between slag 15 and slag 17 is dependent on 

temperature, which might be due to the redox reaction of Fe3+ and Fe2+ depending on 

the temperature. 

 

Fig. 5.53. The viscosity of the Al2O3/Fe2O3-containing slags 

Since the viscosity behavior of the FeO/Fe2O3-containing systems is complicated 

depending on the composition, temperature and partial pressure of oxygen, more 

reliable experimental data are required to assess the current model parameters. 

5.6 Viscosity of real coal ashes 

Due to the low availability of experimental data for some systems, such as the system 

SiO2–CaO–FeO–K2O, the viscosity measurement is necessary for assessment of the 

model parameters. For a specific range where the viscosity behavior such as the local 

viscosity maximum in the system SiO2–FeO is controversial, the viscosity measurement 

is also needed. The motivation here is to produce experimental data which are further 

employed to assess the model parameters or to validate the model developed. Since 

the current model is developed for describing the viscosity of liquid phases in oxide 
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systems relevant to fuel slags, the viscosity of four coal ashes is measured by the 

rotating cylinder method in this study. 

 

Fig. 5.54. Comparison between experimental data and calculated data for the coal 
ashes K2–5, S1–1, S1–2, and S1–4 

As shown in Fig. 5.54, the calculated viscosities agree well with the experimental data 

points, except for the viscosity of the coal ash K2–5. The magnitude of the viscosities 

calculated is greater than that of the measured data for K2–5, which might be caused by 

the deviation of composition. The composition of four coal ashes is listed in Table 5.4. It 

is found that the charge compensation effect has a greater contribution to viscosity for 

K2–5 due to its high content of SiO2. Then the evaporation of charge compensators (for 

example K2O) for Al2O3 might cause a big deviation of the viscosity measured. 

Table 5.4. Main components of four coal ashes (mole fraction) 

Coal ashes SiO2 Al2O3 CaO MgO Na2O K2O Fe2O3 

K2–5 0.7180 0.1747 0.0206 0.0239 0.0028 0.0320 0.0280 

S1–1 0.6292 0.0185 0.2165 0.0873 0.0153 0.0018 0.0314 

S1–2 0.5738 0.1739 0.1612 0.0416 0.0206 0.0071 0.0218 

S1–4 0.5777 0.0798 0.1785 0.0709 0.0510 0.0105 0.0316 
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When the composition remains constant during the viscosity measurement, it is 

reasonable that the viscosity follows the order: K2–5 > S1–2 > S1–4 > S1–1. The 

current model also gives the same viscosity order. It should be pointed out that the 

components BaO, Mn2O3, and TiO2 are ignored here when the viscosity of the coal 

ashes is calculated with the current model. Moreover, the value of partial pressure of 

oxygen is assumed to be 1.0×10–6. 
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5.7 Application of the current model in selection of coal ashes fluxing 
and blending 

A reliable viscosity model has been developed, which can be used to generate the iso-

viscosity lines and the 3-dimensional viscosity surface. As Fig. 5.55 shows, the 3-

dimensional viscosity surface is presented for the systems SiO2–Al2O3, Al2O3–CaO, and 

SiO2–Al2O3–CaO. 

 

 

Fig. 5.55. Iso-viscosity lines and viscosity surface in the systems SiO2–Al2O3, Al2O3–
CaO, and SiO2–Al2O3–CaO 
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For the binary systems SiO2–Al2O3 and Al2O3–CaO, the iso-viscosity lines show the way 

that the temperature-induced viscosity change is compensated by the composition-

induced viscosity change. When the temperature remains constant, the way of the 

change in viscosity is presented with respect to composition for the ternary system 

SiO2–Al2O3–CaO. That means, the way of the change in viscosity with respect to 

composition, temperature as well as partial pressure of oxygen (for FeO/Fe2O3-

containing systems, for example) can be visualized. It is noted that a fully liquid region 

(within black curves) for the system SiO2–Al2O3–CaO at 1600oC is identified using the 

thermodynamic database [96–100]. Such visualization can give a quantitative guideline 

in selection of the coal ashes fluxing and blending at a given condition. 

Visualization of the viscosity can be done not only for simple systems such as the binary 

system SiO2–Al2O3, but also for higher order systems such as the quinary system SiO2–

Al2O3–CaO–MgO–Na2O. As an example, viscosity of the system SiO2–Al2O3–CaO–

MgO–Na2O–K2O is visualized at 1600oC and 0.1 mole fraction Na2O, 0.1 mole fraction 

K2O, and 0.2 mole fraction MgO, as shown in Fig. 5.56. 

 

Fig. 5.56.  Iso-viscosity lines and viscosity surface in the system SiO2–Al2O3–CaO–
MgO–Na2O–K2O at 1600oC as well as 0.1 mole fraction Na2O, 0.1 mole 
fraction K2O, and 0.2 mole fraction MgO 
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Fig. 5.57. Principle of coal ashes bending 

Another example is given to show the principle to select the blending proportions for two 

or three coal ashes by using such visualization of viscosity, as shown in Fig. 5.57. 

There are three coal ashes which are marked as A, B, and C, whereas the target ash 
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blend composition is marked as X1, X2, or X3. Then the lever rule is employed to 

determine the ratio of the amount of two coal ashes, which is expressed as 

Amount of Coal ash A
Amount of Coal ash B

=
BX1
AX1

                                                                                                               (5.1) 

Amount of Coal ash B
Amount of Coal ash C

=
CX2
BX2

                                                                                                               (5.2) 

With the same principle, the ratio of amount of three coal ashes can be obtained by 

Amount of Coal ash A / Amount of Coal ash B / Amount of Coal ash C 

= aX3/bX3/cX3                                                                                                                                       (5.3) 

It is noted that the target ash blend composition corresponds to the viscosity values in 

the range from 2 to 3 on the logarithmic scale (in Pa•s), which is an optimum viscosity 

range of coal ash slags in slagging gasifier. In contrast, the viscosity of only coal ash B 

is greater than 400 Pa•s at 1600oC and moreover the viscosity of coal ash A without 

blending with coal ash B or C should be very large due to the presence of solid phases. 

Besides the coal ashes blending, the use of fluxes such as CaO and FeO is an 

alternative approach to adjust the viscosity of coal ash slags. Using the visualization of 

the viscosity, the composition can be changed by more than one flux and the amount of 

fluxes is directly obtained to reach an optimum viscosity under certain conditions. 
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6 Conclusion and outlook 

A new structure based model, which we call the modified Arrhenius model, has been 

developed to describe the viscosity behavior of molten fuel slags in the Newtonian 

range, based on the thermodynamic modified associate species model. 

In the model, the structure of slag is effectively taken into account, in which the viscosity 

is linked to the type and distribution of species, as well as the connectivity of species. 

The type of species is determined from the Gibbs energy and thereby the distribution of 

species is calculated by using a completely self-consistent thermodynamic dataset, 

where the modified associate species model was applied for the slag. This dataset 

provides the phase diagram and other thermodynamic properties to be calculated in 

good agreement with the experimental data. In consequence, both the temperature- and 

composition-induced structural changes of molten fuel slags have been described with a 

set of monomeric associate species in combination with the critical clusters induced by 

the self- and inter-polymerizations. Therefore the dependences of the viscosity on 

temperature and composition are well described with the current viscosity model. 

The calculated data for the pure oxides SiO2 and Al2O3 and slag relevant binary 

systems SiO2–Al2O3, SiO2–CaO, SiO2–MgO, SiO2–Na2O, SiO2–K2O, and Al2O3–CaO 

are in good agreement with the available experimental data using only one set of model 

parameters, all having a clear physico-chemical meaning. The viscosities of the pure 

oxides CaO, MgO, Na2O, and K2O as well as the binary systems Al2O3–MgO, Al2O3–

Na2O, and Al2O3–K2O obtained by way of extrapolation of the corresponding higher 

order systems also show a very reasonable behavior. With the new model, one of the 

challenges of the viscosity behavior in SiO2-based binary systems, the so called 

lubricant effect, can be described very well by relying on the monomeric associate 

species as well as the two common critical silica clusters (SiO2)6 and (SiO2)109. Another 

challenge in Al2O3-based binary systems, the amphoteric or charge compensation effect, 

can also be described very well by relying on the monomeric associate species CaAl2O4, 

MgAl2O4, NaAlO2, or KAlO2. 
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The new model has been extended to describe the viscosity of the system SiO2–Al2O3–

CaO–MgO–Na2O–K2O and its ternary or higher order subsystems. In the 

multicomponent systems without Al2O3, four ternary associate species Na2Si6Ca3O16, 

K2SiCaO4, K2SiMgO4, and K2Si5MgO12, besides the monomeric associate species 

employed for the pure oxides and binary systems, are used to describe the viscosity. To 

describe the Al2O3-induced viscosity maximum, the monomeric associate species 

CaAl2O4, MgAl2O4, CaSi2Al2O8, and Mg2Si5Al4O18 in systems containing alkaline earth 

oxides or NaAlO2, KAlO2, NaSiAlO4, KSiAlO4, NaSi3AlO8, and KSi2AlO6 in systems 

containing alkali oxides are employed. The monomeric associate species CaAl2O4, 

MgAl2O4, NaAlO2, and KAlO2 represent quasi-tetrahedra behaving like silica tetrahedra. 

Some of the Al3+-based quasi-tetrahedra can interconnect with the silica network 

structure. These are described by way of the ternary associate species CaSi2Al2O8, 

Mg2Si5Al4O18, NaSiAlO4, KSiAlO4, NaSi3AlO8, and KSi2AlO6. The model parameters for 

the ternary associate species have been assessed using more than 4500 experimental 

data points. As a result, the viscosities for the systems SiO2–CaO–MgO, SiO2–CaO–

Na2O, SiO2–Na2O–K2O, SiO2–Al2O3–CaO, SiO2–Al2O3–MgO, SiO2–Al2O3–Na2O, SiO2–

Al2O3–K2O, SiO2–Al2O3–CaO–MgO, SiO2–Al2O3–CaO–Na2O, SiO2–Al2O3–Na2O–K2O, 

SiO2–CaO–MgO–Na2O–K2O, and SiO2–Al2O3–CaO–MgO–Na2O–K2O are well 

described. The influence of different oxides CaO, MgO, Na2O, and K2O on the viscosity 

in systems with or without Al2O3 is well predicted. The viscosity behavior when 

substituting one network modifier for another at constant SiO2 contents is well described. 

The Al2O3-induced viscosity maximum is also well described, in which the position and 

magnitude of the maximum as a function of composition and temperature (charge 

compensation effect) are properly predicted. Another viscosity maximum when 

replacing Al2O3 with SiO2 for constant contents of the network modifiers is well 

presented. Moreover, the viscosities extrapolated from lower order systems to 

corresponding higher order systems are in good agreement with the experimental data, 

which indicates that the current model is self-consistent. 

The new model has also been extended to describe the viscosity of the FeO/Fe2O3-

containing systems. For description of the Fe2+/Fe3+-induced structural change in the 

system SiO2–Al2O3–CaO–MgO–Na2O–K2O–FeO–Fe2O3, 14 Fe-containing associate 
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species are employed, among which the associate species CaFe2O4, MgFe2O4, 

NaFeO2, and KFeO2 representing Fe3+-based quasi-tetrahedra behave as network 

formers. No ternary associate species are employed to describe the Fe3+-induced 

charge compensation effect. The model parameters for the FeO/Fe2O3-containing 

systems have been assessed using more than 1600 experimental data points with 

known partial pressure of oxygen. As a result, the viscosity in the investigated systems 

SiO2–FeO, SiO2–Fe2O3, Fe2O3–CaO, Fe2O3–Na2O, SiO2–CaO–FeO, SiO2–MgO–FeO, 

SiO2–Al2O3–FeO, SiO2–Fe2O3–Na2O, SiO2–Fe2O3–K2O, SiO2–CaO–MgO–FeO, SiO2–

MgO–K2O–FeO, SiO2–Fe2O3–Na2O–K2O, SiO2–Al2O3–FeO–CaO, SiO2–Al2O3–Fe2O3–

CaO, and SiO2–Al2O3–CaO–MgO–Na2O–K2O–Fe2O3 is properly described. The local 

viscosity maximum in the system SiO2–FeO/Fe2O3 might be described by relying on an 

additional structural term (FeO∙SiO2∙Fe2O3). The Fe3+-induced charge compensation 

effect is less pronounced than that induced by Al3+. The Fe3+-induced viscosity 

maximum does not always occur depending on the charge compensators for Fe3+. The 

viscosity maximum when replacing Fe2O3 with SiO2 for constant contents of the other 

network modifiers does not occur. Moreover, the partial pressure of oxygen plays an 

important role in modelling the viscosity of the FeO/Fe2O3-containing systems. 

With the new model, the iso-viscosity lines and 3-dimensional viscosity surfaces are 

generated for selecting the coal ash fluxing and blending. The next step is to further 

assess the model parameters for the FeO/Fe2O3-containing systems. Then the model 

will be extended by further relevant oxides such as P2O5, which is usually contained in 

fuel slags, and the model thereby is capable of describing the viscosity of P2O5-

containing systems for a better selection of the optimum operating condition in gasifiers. 

Further viscosity measurements are also necessary to validate the current model. In 

addition, partly-crystallized slags are common in slagging gasifiers. Therefore, the 

model needs to be extended from fully liquid phase to mixtures of liquid and solids, in 

which the crystallization kinetics should be taken into account. 
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Appendix 

Currently optimized model parameters as well as predicted theoretical viscosity and 

activation energy of vicous flow for the FeO/Fe2O3-containing systems 

Structural unit i 
Model parameters Predicted theoretical viscosity and 

activation energy of viscous flow 

𝐀𝐢 𝐁𝐢 𝛈𝐓→∞, Pa•s 𝐄𝛈, kJ/mol 

FeO –8.998 10.273 1.24×10–04 85.42 

Fe2O3 –11.241 11.135 1.31×10–05 92.58 

FeNa2O2 –8.313 20.869 2.45×10–04 173.52 

FeSiO3 –2.781 94.710 6.20×10–02 787.46 

Fe2SiO4 –25.356 23.339 9.72×10–12 194.05 

FeSi2CaO6 –17.375 18.347 2.85×10–08 152.54 

FeSi2MgO6 –41.444 39.274 1.00×10–18 326.54 

FeSiNa2O4 –2.971 10.773 5.13×10–02 89.57 

FeAl2O4 –18.848 26.008 6.53×10–09 216.24 

Fe2Si5Al4O18 –2.147 17.248 1.17×10–01 143.41 

CaFe2O4 –11.017 12.594 1.64×10–05 104.71 

MgFe2O4 –16.427 10.789 7.35×10–08 89.70 

NaFeO2 –16.206 21.870 9.15×10–08 181.84 

KFeO2 –10.310 23.560 3.33×10–05 195.88 

 

It is seen that the values of the model parameters Bi for CaFe2O4, MgFe2O4, NaFeO2, 

and KFeO2 follow the order: KFeO2 > NaFeO2 > CaFe2O4 > MgFe2O4, which is 

reasonable from the view of ionization potential. In contrast, the model parameter Bi for 

the species FeAl2O4 is equal to that of the other Al3+-induced quasi-tetrahedra, which 

might be caused by the stronger charge compensation effect induced by Al3+. The 

species Fe2O3 has the larger activation energy of viscous flow than the species FeO. 

According to the degree of polymerization, the activation energy of species FeSiO3 is 

greater than that of the species Fe2SiO4. However, it is noted that the activation energy 
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of the species FeSiO3 seems to be too large (greater than that of the species (SiO2)6), 

which needs to be further optimized. The same holds for the species FeSi2MgO6. 
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