000255816 001__ 255816
000255816 005__ 20220930130047.0
000255816 0247_ $$2doi$$a10.2136/vzj2014.11.0169
000255816 0247_ $$2WOS$$aWOS:000362065400004
000255816 037__ $$aFZJ-2015-05927
000255816 041__ $$aEnglish
000255816 082__ $$a550
000255816 1001_ $$0P:(DE-Juel1)144570$$aGangi, Laura$$b0
000255816 245__ $$aA New Method for In Situ Measurements of Oxygen Isotopologues of Soil Water and Carbon Dioxide with High Time Resolution
000255816 260__ $$aMadison, Wis.$$bSSSA$$c2015
000255816 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1443516762_3773
000255816 3367_ $$2DataCite$$aOutput Types/Journal article
000255816 3367_ $$00$$2EndNote$$aJournal Article
000255816 3367_ $$2BibTeX$$aARTICLE
000255816 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000255816 3367_ $$2DRIVER$$aarticle
000255816 520__ $$aThe newly developed method allows for the first time simultaneous and continuous measurements of the oxygen isotope composition of H2O and CO2 along soil profiles. Its application in the field will contribute to reducing the uncertainties associated with soil–atmosphere CO2 oxygen isotope fluxes.The oxygen isotope composition of atmospheric CO2 (δ18Oac) can be used to disentangle ecosystem component CO2 fluxes, such as soil respiration and plant assimilation, because the δ18O composition of different water pools is transferred to CO2 during isotopic equilibration. The oxygen isotope exchange between CO2 and water in soils has been widely studied with theoretical models, but experimental data are scarce, albeit indispensable to characterization of the role of soils in determining δ18Oac. Here, we present a new methodology to monitor the δ18O of soil CO2 (δ18Osc) and of soil water (δ18Osw) in situ at varying soil water content. Infrared laser spectroscopy was combined with gas-permeable polypropylene (PP) tubing installed at different depths in a sand column. The permeable tubing did not lead to any isotopic fractionation and was suitable for combined δ18Osc and δ18Osw measurements. Soil water became gradually 18O enriched from the top of the sand over several days. Measured and δ18Osc simulated with the model MuSICA indicated incomplete CO2–H2O isotopic equilibrium. Irrigation of the sand column with tapwater resulted in a temporary reset of δ18Osw along the soil column, while δ18Osc was only influenced when the enzyme carbonic anhydrase was added to the irrigation water. Our study demonstrates that δ18Osc and δ18Osw can now be monitored in situ and online with high time resolution with minimum disturbance. With this new tool at hand, research into the oxygen isotope exchange between soil water and CO2 in natural soils has the potential to advance to a new stage and help to constrain the atmospheric CO2 budget.
000255816 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000255816 588__ $$aDataset connected to CrossRef
000255816 7001_ $$0P:(DE-Juel1)145658$$aRothfuss, Youri$$b1$$ufzj
000255816 7001_ $$0P:(DE-HGF)0$$aOgée, Jerôme$$b2
000255816 7001_ $$0P:(DE-HGF)0$$aWingate, Lisa$$b3
000255816 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b4$$ufzj
000255816 7001_ $$0P:(DE-Juel1)142357$$aBrüggemann, Nicolas$$b5$$eCorresponding author$$ufzj
000255816 773__ $$0PERI:(DE-600)2088189-7$$a10.2136/vzj2014.11.0169$$gVol. 14, no. 8, p. 0 -$$n8$$p0 - 0$$tVadose zone journal$$v14$$x1539-1663$$y2015
000255816 8564_ $$uhttps://juser.fz-juelich.de/record/255816/files/vzj-14-8-vzj2014.11.0169.pdf$$yRestricted
000255816 8564_ $$uhttps://juser.fz-juelich.de/record/255816/files/vzj-14-8-vzj2014.11.0169.gif?subformat=icon$$xicon$$yRestricted
000255816 8564_ $$uhttps://juser.fz-juelich.de/record/255816/files/vzj-14-8-vzj2014.11.0169.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000255816 8564_ $$uhttps://juser.fz-juelich.de/record/255816/files/vzj-14-8-vzj2014.11.0169.jpg?subformat=icon-180$$xicon-180$$yRestricted
000255816 8564_ $$uhttps://juser.fz-juelich.de/record/255816/files/vzj-14-8-vzj2014.11.0169.jpg?subformat=icon-640$$xicon-640$$yRestricted
000255816 8564_ $$uhttps://juser.fz-juelich.de/record/255816/files/vzj-14-8-vzj2014.11.0169.pdf?subformat=pdfa$$xpdfa$$yRestricted
000255816 8767_ $$92015-08-10$$d2015-08-10$$ePublication charges$$jZahlung erfolgt$$zUSD 1.400,-
000255816 909CO $$ooai:juser.fz-juelich.de:255816$$pVDB:Earth_Environment$$pVDB$$pOpenAPC$$popenCost
000255816 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bVADOSE ZONE J : 2014
000255816 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000255816 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000255816 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000255816 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000255816 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000255816 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000255816 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000255816 9141_ $$y2015
000255816 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145658$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000255816 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000255816 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142357$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000255816 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000255816 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000255816 980__ $$ajournal
000255816 980__ $$aVDB
000255816 980__ $$aI:(DE-Juel1)IBG-3-20101118
000255816 980__ $$aUNRESTRICTED
000255816 980__ $$aAPC