001     255816
005     20220930130047.0
024 7 _ |2 doi
|a 10.2136/vzj2014.11.0169
024 7 _ |2 WOS
|a WOS:000362065400004
037 _ _ |a FZJ-2015-05927
041 _ _ |a English
082 _ _ |a 550
100 1 _ |0 P:(DE-Juel1)144570
|a Gangi, Laura
|b 0
245 _ _ |a A New Method for In Situ Measurements of Oxygen Isotopologues of Soil Water and Carbon Dioxide with High Time Resolution
260 _ _ |a Madison, Wis.
|b SSSA
|c 2015
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1443516762_3773
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The newly developed method allows for the first time simultaneous and continuous measurements of the oxygen isotope composition of H2O and CO2 along soil profiles. Its application in the field will contribute to reducing the uncertainties associated with soil–atmosphere CO2 oxygen isotope fluxes.The oxygen isotope composition of atmospheric CO2 (δ18Oac) can be used to disentangle ecosystem component CO2 fluxes, such as soil respiration and plant assimilation, because the δ18O composition of different water pools is transferred to CO2 during isotopic equilibration. The oxygen isotope exchange between CO2 and water in soils has been widely studied with theoretical models, but experimental data are scarce, albeit indispensable to characterization of the role of soils in determining δ18Oac. Here, we present a new methodology to monitor the δ18O of soil CO2 (δ18Osc) and of soil water (δ18Osw) in situ at varying soil water content. Infrared laser spectroscopy was combined with gas-permeable polypropylene (PP) tubing installed at different depths in a sand column. The permeable tubing did not lead to any isotopic fractionation and was suitable for combined δ18Osc and δ18Osw measurements. Soil water became gradually 18O enriched from the top of the sand over several days. Measured and δ18Osc simulated with the model MuSICA indicated incomplete CO2–H2O isotopic equilibrium. Irrigation of the sand column with tapwater resulted in a temporary reset of δ18Osw along the soil column, while δ18Osc was only influenced when the enzyme carbonic anhydrase was added to the irrigation water. Our study demonstrates that δ18Osc and δ18Osw can now be monitored in situ and online with high time resolution with minimum disturbance. With this new tool at hand, research into the oxygen isotope exchange between soil water and CO2 in natural soils has the potential to advance to a new stage and help to constrain the atmospheric CO2 budget.
536 _ _ |0 G:(DE-HGF)POF3-255
|a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-Juel1)145658
|a Rothfuss, Youri
|b 1
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Ogée, Jerôme
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Wingate, Lisa
|b 3
700 1 _ |0 P:(DE-Juel1)129549
|a Vereecken, Harry
|b 4
|u fzj
700 1 _ |0 P:(DE-Juel1)142357
|a Brüggemann, Nicolas
|b 5
|e Corresponding author
|u fzj
773 _ _ |0 PERI:(DE-600)2088189-7
|a 10.2136/vzj2014.11.0169
|g Vol. 14, no. 8, p. 0 -
|n 8
|p 0 - 0
|t Vadose zone journal
|v 14
|x 1539-1663
|y 2015
856 4 _ |u https://juser.fz-juelich.de/record/255816/files/vzj-14-8-vzj2014.11.0169.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/255816/files/vzj-14-8-vzj2014.11.0169.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/255816/files/vzj-14-8-vzj2014.11.0169.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/255816/files/vzj-14-8-vzj2014.11.0169.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/255816/files/vzj-14-8-vzj2014.11.0169.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/255816/files/vzj-14-8-vzj2014.11.0169.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:255816
|p OpenAPC
|p VDB
|p VDB:Earth_Environment
|p openCost
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)145658
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129549
|a Forschungszentrum Jülich GmbH
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)142357
|a Forschungszentrum Jülich GmbH
|b 5
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-255
|1 G:(DE-HGF)POF3-250
|2 G:(DE-HGF)POF3-200
|a DE-HGF
|l Terrestrische Umwelt
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b VADOSE ZONE J : 2014
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)1060
|2 StatID
|a DBCoverage
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21