001     255838
005     20240711085701.0
024 7 _ |2 doi
|a 10.1039/C5RA15783H
024 7 _ |a WOS:000362438300011
|2 WOS
024 7 _ |a altmetric:4621515
|2 altmetric
037 _ _ |a FZJ-2015-05949
041 _ _ |a English
082 _ _ |a 540
100 1 _ |0 P:(DE-Juel1)162508
|a Tchoua Ngamou, Patrick
|b 0
|e Corresponding author
245 _ _ |a Tailoring the structure and gas permeation properties of silica membranes via binary metal oxides doping
260 _ _ |a London
|b RSC Publishing
|c 2015
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1444051174_8728
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The sol–gel method was employed for the synthesis of binary X–Co (X: Mn, Cr) oxide-doped silicamembranes with different X/Co molar ratios (X/Co: 0.1, 0.3, 0.9). Single-gas permeation tests wereperformed at 200 C to determine the effect of the binary oxide composition on the amorphous silicanetwork. The X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS) and Transmission ElectronMicroscopy (TEM) indicated the presence of smaller MnxCo3xO4 and CrxCo3xO4 oxide nanocrystals inthe silica matrix in addition to amorphous Co, Mn and Cr species. The H2/N2 permeance ratio decreasedfrom (126.3 9) to (10.7 2) with an increase in X/Co molar ratio from 0.1 to 0.9 due to the formationof larger pores. However, the binary Co–X oxide-doped silica membrane with the lowest X contentshowed a H2/N2 permeance ratio, (126.3 9), higher than that, (63.6 6), of the single cobalt oxidesilica membrane. Based on FTIR analysis, it was found that the densification of the membrane at low Xcontent resulted from the formation of silica structures with narrowed siloxane rings. In contrast, theenlargement of siloxane rings due to favorable condensation reactions occurred at high X content.
536 _ _ |0 G:(DE-HGF)POF3-113
|a 113 - Methods and Concepts for Material Development (POF3-113)
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-Juel1)129617
|a Ivanova, Mariya
|b 1
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Herwartz, Cleopatra
|b 2
700 1 _ |0 P:(DE-Juel1)144193
|a Lühmann, Nicole
|b 3
700 1 _ |0 P:(DE-Juel1)133839
|a Besmehn, Astrid
|b 4
|u fzj
700 1 _ |0 P:(DE-Juel1)129637
|a Meulenberg, Wilhelm Albert
|b 5
700 1 _ |0 P:(DE-Juel1)130824
|a Mayer, Joachim
|b 6
700 1 _ |0 P:(DE-Juel1)161591
|a Guillon, Olivier
|b 7
773 _ _ |0 PERI:(DE-600)2623224-8
|a 10.1039/C5RA15783H
|g p. 10.1039.C5RA15783H
|n 101
|p 82717-82725
|t RSC Advances
|v 5
|x 2046-2069
|y 2015
856 4 _ |u https://juser.fz-juelich.de/record/255838/files/c5ra15783h.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/255838/files/c5ra15783h.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/255838/files/c5ra15783h.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/255838/files/c5ra15783h.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/255838/files/c5ra15783h.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/255838/files/c5ra15783h.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:255838
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)162508
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129617
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)144193
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)133839
|a Forschungszentrum Jülich GmbH
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129637
|a Forschungszentrum Jülich GmbH
|b 5
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130824
|a Forschungszentrum Jülich GmbH
|b 6
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)161591
|a Forschungszentrum Jülich GmbH
|b 7
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-113
|1 G:(DE-HGF)POF3-110
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b RSC ADV : 2014
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)ZEA-3-20090406
|k ZEA-3
|l Analytik
|x 1
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)ZEA-3-20090406
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013
981 _ _ |a I:(DE-Juel1)ZEA-3-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21