000255850 001__ 255850
000255850 005__ 20210129220544.0
000255850 0247_ $$2doi$$a10.1088/0957-4484/26/41/415202
000255850 0247_ $$2ISSN$$a0957-4484
000255850 0247_ $$2ISSN$$a1361-6528
000255850 0247_ $$2WOS$$aWOS:000363433700003
000255850 037__ $$aFZJ-2015-05961
000255850 082__ $$a530
000255850 1001_ $$0P:(DE-Juel1)157669$$aBreuer, Thomas$$b0
000255850 245__ $$aLow-current operations in 4F $^{2}$ -compatible Ta $_{2}$ O $_{5}$ -based complementary resistive switches
000255850 260__ $$aBristol$$bIOP Publ.$$c2015
000255850 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1443600155_3800
000255850 3367_ $$2DataCite$$aOutput Types/Journal article
000255850 3367_ $$00$$2EndNote$$aJournal Article
000255850 3367_ $$2BibTeX$$aARTICLE
000255850 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000255850 3367_ $$2DRIVER$$aarticle
000255850 520__ $$aComplementary resistive switches (CRS), which consist of two anti-serially connected bipolar switching ReRAM cells, can reduce sneak path currents in passive crossbar arrays. However, the high operation current restrains the implementation of the CRS device. In this article, we present low current operation (<300 μA) of vertically stacked, 4F2-compatible Ta2O5-based CRS devices exhibiting two terminals. Two types of devices, either offering a nano- or a micrometer scale bottom cell (BC), are considered. The top cell (TC) in both configurations is designed of micrometer size. A novel three-step electroforming procedure for the vertical CRS device having no access to the middle electrode is exemplified and compared to the conventional forming procedure using three-terminal CRS devices. This three-step electroforming procedure provides adjustment of the maximum switching current in the nano-BC CRS: a low-level current compliance during forming enables low current CRS operation in subsequent switching cycles. Further, the nano-BC CRS shows the stable switching up to 104 cycles whereas the micro-BC CRS endures up to 106 cycles.
000255850 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000255850 588__ $$aDataset connected to CrossRef
000255850 7001_ $$0P:(DE-HGF)0$$aSiemon, Anne$$b1
000255850 7001_ $$0P:(DE-HGF)0$$aLinn, Eike$$b2$$eCorresponding author
000255850 7001_ $$0P:(DE-Juel1)158062$$aMenzel, Stephan$$b3
000255850 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b4$$ufzj
000255850 7001_ $$0P:(DE-Juel1)145504$$aRana, Vikas$$b5
000255850 773__ $$0PERI:(DE-600)1362365-5$$a10.1088/0957-4484/26/41/415202$$gVol. 26, no. 41, p. 415202 -$$n41$$p415202 -$$tNanotechnology$$v26$$x1361-6528$$y2015
000255850 8564_ $$uhttps://juser.fz-juelich.de/record/255850/files/pdf.pdf$$yRestricted
000255850 8564_ $$uhttps://juser.fz-juelich.de/record/255850/files/pdf.pdf?subformat=pdfa$$xpdfa$$yRestricted
000255850 909CO $$ooai:juser.fz-juelich.de:255850$$pVDB
000255850 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157669$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000255850 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158062$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000255850 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000255850 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145504$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000255850 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000255850 9141_ $$y2015
000255850 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000255850 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000255850 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOTECHNOLOGY : 2014
000255850 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000255850 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000255850 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000255850 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000255850 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000255850 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000255850 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000255850 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000255850 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000255850 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000255850 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000255850 980__ $$ajournal
000255850 980__ $$aVDB
000255850 980__ $$aI:(DE-Juel1)PGI-7-20110106
000255850 980__ $$aUNRESTRICTED