000255856 001__ 255856
000255856 005__ 20210129220544.0
000255856 0247_ $$2doi$$a10.1038/ncomms9496
000255856 0247_ $$2Handle$$a2128/9292
000255856 0247_ $$2WOS$$aWOS:000363148700001
000255856 0247_ $$2altmetric$$aaltmetric:4601011
000255856 0247_ $$2pmid$$apmid:26415699
000255856 037__ $$aFZJ-2015-05962
000255856 082__ $$a500
000255856 1001_ $$0P:(DE-HGF)0$$aRamalingam, Nagendran$$b0
000255856 245__ $$aA resilient formin-derived cortical actin meshwork in the rear drives actomyosin-based motility in 2D confinement
000255856 260__ $$aLondon$$bNature Publishing Group$$c2015
000255856 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1443600687_3864
000255856 3367_ $$2DataCite$$aOutput Types/Journal article
000255856 3367_ $$00$$2EndNote$$aJournal Article
000255856 3367_ $$2BibTeX$$aARTICLE
000255856 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000255856 3367_ $$2DRIVER$$aarticle
000255856 520__ $$aCell migration is driven by the establishment of disparity between the cortical properties of the softer front and the more rigid rear allowing front extension and actomyosin-based rear contraction. However, how the cortical actin meshwork in the rear is generated remains elusive. Here we identify the mDia1-like formin A (ForA) from Dictyostelium discoideum that generates a subset of filaments as the basis of a resilient cortical actin sheath in the rear. Mechanical resistance of this actin compartment is accomplished by actin crosslinkers and IQGAP-related proteins, and is mandatory to withstand the increased contractile forces in response to mechanical stress by impeding unproductive blebbing in the rear, allowing efficient cell migration in two-dimensional-confined environments. Consistently, ForA supresses the formation of lateral protrusions, rapidly relocalizes to new prospective ends in repolarizing cells and is required for cortical integrity. Finally, we show that ForA utilizes the phosphoinositide gradients in polarized cells for subcellular targeting.
000255856 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000255856 588__ $$aDataset connected to CrossRef
000255856 7001_ $$0P:(DE-HGF)0$$aFranke, Christof$$b1
000255856 7001_ $$0P:(DE-Juel1)144546$$aJaschinski, Evelin$$b2
000255856 7001_ $$0P:(DE-HGF)0$$aWinterhoff, Moritz$$b3
000255856 7001_ $$0P:(DE-HGF)0$$aLu, Yao$$b4
000255856 7001_ $$0P:(DE-HGF)0$$aBrühmann, Stefan$$b5
000255856 7001_ $$0P:(DE-HGF)0$$aJunemann, Alexander$$b6
000255856 7001_ $$0P:(DE-HGF)0$$aMeier, Helena$$b7
000255856 7001_ $$0P:(DE-HGF)0$$aNoegel, Angelika A.$$b8
000255856 7001_ $$0P:(DE-HGF)0$$aWeber, Igor$$b9
000255856 7001_ $$0P:(DE-HGF)0$$aZhao, Hongxia$$b10
000255856 7001_ $$0P:(DE-Juel1)128833$$aMerkel, Rudolf$$b11
000255856 7001_ $$0P:(DE-HGF)0$$aSchleicher, Michael$$b12
000255856 7001_ $$0P:(DE-HGF)0$$aFaix, Jan$$b13$$eCorresponding author
000255856 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/ncomms9496$$gVol. 6, p. 8496 -$$p8496 -$$tNature Communications$$v6$$x2041-1723$$y2015
000255856 8564_ $$uhttps://juser.fz-juelich.de/record/255856/files/ncomms9496.pdf$$yOpenAccess
000255856 8564_ $$uhttps://juser.fz-juelich.de/record/255856/files/ncomms9496.gif?subformat=icon$$xicon$$yOpenAccess
000255856 8564_ $$uhttps://juser.fz-juelich.de/record/255856/files/ncomms9496.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000255856 8564_ $$uhttps://juser.fz-juelich.de/record/255856/files/ncomms9496.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000255856 8564_ $$uhttps://juser.fz-juelich.de/record/255856/files/ncomms9496.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000255856 8564_ $$uhttps://juser.fz-juelich.de/record/255856/files/ncomms9496.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000255856 909CO $$ooai:juser.fz-juelich.de:255856$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000255856 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144546$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000255856 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128833$$aForschungszentrum Jülich GmbH$$b11$$kFZJ
000255856 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000255856 9141_ $$y2015
000255856 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2014
000255856 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000255856 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000255856 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000255856 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000255856 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000255856 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000255856 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000255856 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000255856 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000255856 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000255856 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000255856 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000255856 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNAT COMMUN : 2014
000255856 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000255856 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000255856 920__ $$lyes
000255856 9201_ $$0I:(DE-Juel1)ICS-7-20110106$$kICS-7$$lBiomechanik$$x0
000255856 9801_ $$aFullTexts
000255856 980__ $$ajournal
000255856 980__ $$aVDB
000255856 980__ $$aUNRESTRICTED
000255856 980__ $$aI:(DE-Juel1)ICS-7-20110106
000255856 981__ $$aI:(DE-Juel1)IBI-2-20200312