001     255856
005     20210129220544.0
024 7 _ |a 10.1038/ncomms9496
|2 doi
024 7 _ |a 2128/9292
|2 Handle
024 7 _ |a WOS:000363148700001
|2 WOS
024 7 _ |a altmetric:4601011
|2 altmetric
024 7 _ |a pmid:26415699
|2 pmid
037 _ _ |a FZJ-2015-05962
082 _ _ |a 500
100 1 _ |a Ramalingam, Nagendran
|0 P:(DE-HGF)0
|b 0
245 _ _ |a A resilient formin-derived cortical actin meshwork in the rear drives actomyosin-based motility in 2D confinement
260 _ _ |a London
|c 2015
|b Nature Publishing Group
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1443600687_3864
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Cell migration is driven by the establishment of disparity between the cortical properties of the softer front and the more rigid rear allowing front extension and actomyosin-based rear contraction. However, how the cortical actin meshwork in the rear is generated remains elusive. Here we identify the mDia1-like formin A (ForA) from Dictyostelium discoideum that generates a subset of filaments as the basis of a resilient cortical actin sheath in the rear. Mechanical resistance of this actin compartment is accomplished by actin crosslinkers and IQGAP-related proteins, and is mandatory to withstand the increased contractile forces in response to mechanical stress by impeding unproductive blebbing in the rear, allowing efficient cell migration in two-dimensional-confined environments. Consistently, ForA supresses the formation of lateral protrusions, rapidly relocalizes to new prospective ends in repolarizing cells and is required for cortical integrity. Finally, we show that ForA utilizes the phosphoinositide gradients in polarized cells for subcellular targeting.
536 _ _ |a 552 - Engineering Cell Function (POF3-552)
|0 G:(DE-HGF)POF3-552
|c POF3-552
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Franke, Christof
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Jaschinski, Evelin
|0 P:(DE-Juel1)144546
|b 2
700 1 _ |a Winterhoff, Moritz
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Lu, Yao
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Brühmann, Stefan
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Junemann, Alexander
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Meier, Helena
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Noegel, Angelika A.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Weber, Igor
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Zhao, Hongxia
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Merkel, Rudolf
|0 P:(DE-Juel1)128833
|b 11
700 1 _ |a Schleicher, Michael
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Faix, Jan
|0 P:(DE-HGF)0
|b 13
|e Corresponding author
773 _ _ |a 10.1038/ncomms9496
|g Vol. 6, p. 8496 -
|0 PERI:(DE-600)2553671-0
|p 8496 -
|t Nature Communications
|v 6
|y 2015
|x 2041-1723
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/255856/files/ncomms9496.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/255856/files/ncomms9496.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/255856/files/ncomms9496.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/255856/files/ncomms9496.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/255856/files/ncomms9496.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/255856/files/ncomms9496.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:255856
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)144546
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)128833
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|2 G:(DE-HGF)POF3-500
|v Engineering Cell Function
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NAT COMMUN : 2014
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-7-20110106
|k ICS-7
|l Biomechanik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-7-20110106
981 _ _ |a I:(DE-Juel1)IBI-2-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21