000255866 001__ 255866
000255866 005__ 20240619083515.0
000255866 0247_ $$2doi$$a10.1063/1.4931115
000255866 0247_ $$2ISSN$$a0021-9606
000255866 0247_ $$2ISSN$$a1089-7690
000255866 0247_ $$2WOS$$aWOS:000362568100034
000255866 0247_ $$2Handle$$a2128/18989
000255866 037__ $$aFZJ-2015-05972
000255866 041__ $$aEnglish
000255866 082__ $$a540
000255866 1001_ $$0P:(DE-HGF)0$$aMaeda, Kousaku$$b0
000255866 245__ $$aLudwig-Soret effect of aqueous solutions of ethylene glycol oligomers, crown ethers, and glycerol: Temperature, molecular weight, and hydrogen bond effect
000255866 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2015
000255866 3367_ $$2DRIVER$$aarticle
000255866 3367_ $$2DataCite$$aOutput Types/Journal article
000255866 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1444211886_7772
000255866 3367_ $$2BibTeX$$aARTICLE
000255866 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000255866 3367_ $$00$$2EndNote$$aJournal Article
000255866 520__ $$aThe thermal diffusion, also called the Ludwig-Soret effect, of aqueous solutions of ethylene glycol oligomers, crown ethers, and glycerol are investigated as a function of temperature by Thermal Diffusion Forced Rayleigh Scattering (TDFRS). The Soret coefficient, $S_{\rm{T}}$, and the thermal diffusion coefficient, $D_{\rm{T}}$, show a linear temperature dependence for all studied compounds in the investigated temperature range. The magnitudes and the slopes of $S_{\rm{T}}$ and $D_{\rm{T}}$ vary with the chemical structure of the solute molecules. All studied molecules contain ether and/or hydroxyl groups, which can act as acceptor or donor to form hydrogen bonds, respectively. By introducing the number of donor and acceptor sites of each solute molecule, we can express their hydrogen bond capability. $S_{\rm{T}}$ and $D_{\rm{T}}$ can be described by an empirical equation depending on the difference of donor minus acceptors sites and the molecular weight of the solute molecule.
000255866 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000255866 588__ $$aDataset connected to CrossRef
000255866 7001_ $$00000-0003-0486-2911$$aShinyashiki, Naoki$$b1
000255866 7001_ $$0P:(DE-HGF)0$$aYagihara, Shin$$b2
000255866 7001_ $$0P:(DE-Juel1)131034$$aWiegand, Simone$$b3
000255866 7001_ $$0P:(DE-HGF)0$$aKita, Rio$$b4$$eCorresponding author
000255866 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/1.4931115$$gVol. 143, no. 12, p. 124504 -$$n12$$p124504 -$$tThe journal of chemical physics$$v143$$x1089-7690$$y2015
000255866 8564_ $$uhttps://juser.fz-juelich.de/record/255866/files/EG_tem_20150829.pdf$$yOpenAccess
000255866 8564_ $$uhttps://juser.fz-juelich.de/record/255866/files/EG_tem_20150829.gif?subformat=icon$$xicon$$yOpenAccess
000255866 8564_ $$uhttps://juser.fz-juelich.de/record/255866/files/EG_tem_20150829.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000255866 8564_ $$uhttps://juser.fz-juelich.de/record/255866/files/EG_tem_20150829.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000255866 8564_ $$uhttps://juser.fz-juelich.de/record/255866/files/EG_tem_20150829.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000255866 8564_ $$uhttps://juser.fz-juelich.de/record/255866/files/EG_tem_20150829.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000255866 909CO $$ooai:juser.fz-juelich.de:255866$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000255866 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131034$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000255866 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000255866 9141_ $$y2015
000255866 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000255866 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM PHYS : 2014
000255866 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000255866 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000255866 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000255866 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000255866 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000255866 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000255866 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000255866 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000255866 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000255866 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000255866 920__ $$lyes
000255866 9201_ $$0I:(DE-Juel1)ICS-3-20110106$$kICS-3$$lWeiche Materie $$x0
000255866 9801_ $$aFullTexts
000255866 980__ $$ajournal
000255866 980__ $$aVDB
000255866 980__ $$aUNRESTRICTED
000255866 980__ $$aI:(DE-Juel1)ICS-3-20110106