000255933 001__ 255933
000255933 005__ 20210129220554.0
000255933 0247_ $$2doi$$a10.1016/j.jhydrol.2015.08.067
000255933 0247_ $$2ISSN$$a0022-1694
000255933 0247_ $$2ISSN$$a1879-2707
000255933 0247_ $$2WOS$$aWOS:000364249500016
000255933 037__ $$aFZJ-2015-06012
000255933 041__ $$aEnglish
000255933 082__ $$a690
000255933 1001_ $$0P:(DE-HGF)0$$aBayat, Hossein$$b0$$eCorresponding author
000255933 245__ $$aParticle size distribution models, their characteristics and fitting capability
000255933 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2015
000255933 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1444043025_8725
000255933 3367_ $$2DataCite$$aOutput Types/Journal article
000255933 3367_ $$00$$2EndNote$$aJournal Article
000255933 3367_ $$2BibTeX$$aARTICLE
000255933 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000255933 3367_ $$2DRIVER$$aarticle
000255933 520__ $$aMany attempts have been made to characterize particle size distribution (PSD) curves using different mathematical models, which are primarily used as a basis for estimating soil hydraulic properties. The principle step in using soil PSD to predict soil hydraulic properties is determining an accurate and continuous curve for PSD. So far, the characteristics of the PSD models, their fitting accuracy, and the effects of their parameters on the shape and position of PSD curves have not been investigated. In this study all developed PSD models, their characteristics, behavior of their parameters, and their fitting capability to the UNSODA database soil samples were investigated. Results showed that beerkan estimation of soil transfer (BEST), two and three parameter Weibull, Rosin and Rammler (1 and 2), unimodal and bimodal Fredlund, and van Genuchten models were flexible over the entire range of soil PSD. Correspondingly, the BEST, two and three parameter Weibull, Rosin and Rammler (1 and 2), hyperbolic and offset renormalized log-normal models possessed a high fitting capability over the entire range of PSD. The few parameters of the BEST, Rosin and Rammler (1 and 2), and two parameter Weibull models provides ease of use in soil physics and mechanics research. Thus, they are seemingly fit with acceptable accuracy in predicting the PSD curve. Although the fractal models have physical and mathematical basis, they do not have the adequate flexibility to contribute a description of the PSD curve. Different aspects of the PSD models should be considered in selecting a model to describe a soil PSD.
000255933 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000255933 588__ $$aDataset connected to CrossRef
000255933 7001_ $$0P:(DE-HGF)0$$aRastgo, Mostafa$$b1
000255933 7001_ $$0P:(DE-HGF)0$$aMansouri Zadeh, Moharram$$b2
000255933 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b3$$ufzj
000255933 773__ $$0PERI:(DE-600)1473173-3$$a10.1016/j.jhydrol.2015.08.067$$gVol. 529, p. 872 - 889$$p872 - 889$$tJournal of hydrology$$v529$$x0022-1694$$y2015
000255933 8564_ $$uhttps://juser.fz-juelich.de/record/255933/files/1-s2.0-S0022169415006824-main.pdf$$yRestricted
000255933 8564_ $$uhttps://juser.fz-juelich.de/record/255933/files/1-s2.0-S0022169415006824-main.gif?subformat=icon$$xicon$$yRestricted
000255933 8564_ $$uhttps://juser.fz-juelich.de/record/255933/files/1-s2.0-S0022169415006824-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000255933 8564_ $$uhttps://juser.fz-juelich.de/record/255933/files/1-s2.0-S0022169415006824-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000255933 8564_ $$uhttps://juser.fz-juelich.de/record/255933/files/1-s2.0-S0022169415006824-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000255933 8564_ $$uhttps://juser.fz-juelich.de/record/255933/files/1-s2.0-S0022169415006824-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000255933 909CO $$ooai:juser.fz-juelich.de:255933$$pVDB:Earth_Environment$$pVDB
000255933 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000255933 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000255933 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ HYDROL : 2014
000255933 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000255933 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000255933 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000255933 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000255933 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000255933 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000255933 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000255933 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000255933 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000255933 9141_ $$y2015
000255933 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000255933 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000255933 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000255933 980__ $$ajournal
000255933 980__ $$aVDB
000255933 980__ $$aI:(DE-Juel1)IBG-3-20101118
000255933 980__ $$aUNRESTRICTED