001     255949
005     20210129220558.0
024 7 _ |2 doi
|a 10.1007/s10661-015-4837-3
024 7 _ |2 ISSN
|a 0167-6369
024 7 _ |2 ISSN
|a 1573-2959
024 7 _ |2 WOS
|a WOS:000362284700015
037 _ _ |a FZJ-2015-06028
041 _ _ |a English
082 _ _ |a 333.7
100 1 _ |0 P:(DE-HGF)0
|a Dutta, Anirban
|b 0
245 _ _ |a Effect of organic carbon chemistry on sorption of atrazine and metsulfuron-methyl as determined by $^{13}$C-NMR and IR spectroscopy
260 _ _ |a Dordrecht [u.a.]
|b Springer Science + Business Media B.V
|c 2015
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1445437726_1447
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Soil organic matter (SOM) content is themajor soil component affecting pesticide sorption. However,recent studies have highlighted the fact that it is notthe total carbon content of the organic matter, but itschemical structure which have a profound effect on thepesticide’s sorption. In the present study, sorption ofatrazine and metsulfuron-methyl herbicides was studiedin four SOM fractions viz. commercial humic acid,commercial lignin, as well as humic acid and huminextracted from a compost. Sorption data was fitted to theFreundlich adsorption equation. In general, theFreundlich slope (1/n) values for both the herbicideswere <1. Except for atrazine sorption on commercialhumic acid, metsulfuron-methyl was more sorbed. Desorptionresults suggested that atrazine was moredesorbed than metsulfuron-methyl. Lignin, whichshowed least sorption of both the herbicides, showedminimum desorption. Sorption of atrazine was bestpositively correlated with the alkyl carbon (adjustedR2 = 0.748) and carbonyl carbon (adjusted R2 = 0.498)but, their effect was statistically nonsignificant(P = 0.05). Metsulfuron-methyl sorption showed bestpositive correlation with carbonyl carbon (adjustedR2 = 0.960; P = 0.05) content. Sorption of both theherbicides showed negative correlation with O/N-alkylcarbon. Correlation of herbicide’s sorption with alkyland carbonyl carbon content of SOM fractions suggestedtheir contribution towards herbicide sorption.But, sorption of metsulfuron-methyl, relatively morepolar than atrazine, was mainly governed by the polargroups in SOM. IR spectra showed that H-bonds andcharge-transfer bonds between SOM fraction and herbicidesprobably operated as mechanisms of adsorption.
536 _ _ |0 G:(DE-HGF)POF3-255
|a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Mandal, Abhishek
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Manna, Suman
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Singh, S. B.
|b 3
700 1 _ |0 P:(DE-Juel1)129438
|a Berns, Anne E.
|b 4
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Singh, Neera
|b 5
|e Corresponding author
773 _ _ |0 PERI:(DE-600)2012242-1
|a 10.1007/s10661-015-4837-3
|g Vol. 187, no. 10, p. 620
|n 10
|p 620
|t Environmental monitoring and assessment
|v 187
|x 1573-2959
|y 2015
856 4 _ |u https://juser.fz-juelich.de/record/255949/files/art_10.1007_s10661-015-4837-3.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/255949/files/art_10.1007_s10661-015-4837-3.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/255949/files/art_10.1007_s10661-015-4837-3.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/255949/files/art_10.1007_s10661-015-4837-3.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/255949/files/art_10.1007_s10661-015-4837-3.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/255949/files/art_10.1007_s10661-015-4837-3.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:255949
|p VDB
|p VDB:Earth_Environment
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129438
|a Forschungszentrum Jülich GmbH
|b 4
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-255
|1 G:(DE-HGF)POF3-250
|2 G:(DE-HGF)POF3-200
|a DE-HGF
|l Terrestrische Umwelt
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b ENVIRON MONIT ASSESS : 2014
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)1060
|2 StatID
|a DBCoverage
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |0 StatID:(DE-HGF)1040
|2 StatID
|a DBCoverage
|b Zoological Record
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21