000256018 001__ 256018
000256018 005__ 20250129092417.0
000256018 0247_ $$2doi$$a10.1109/TBME.2015.2479716
000256018 0247_ $$2ISSN$$a0018-9294
000256018 0247_ $$2ISSN$$a1558-2531
000256018 0247_ $$2WOS$$aWOS:000375001600015
000256018 037__ $$aFZJ-2015-06050
000256018 082__ $$a610
000256018 1001_ $$0P:(DE-Juel1)144822$$aYao, Yu$$b0$$eCorresponding author
000256018 245__ $$aMultiple Vital-sign Based Infection Screening Outperforms Thermography Independent of the Classification Algorithm
000256018 260__ $$aNew York, NY$$bIEEE$$c2015
000256018 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1452496360_899
000256018 3367_ $$2DataCite$$aOutput Types/Journal article
000256018 3367_ $$00$$2EndNote$$aJournal Article
000256018 3367_ $$2BibTeX$$aARTICLE
000256018 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000256018 3367_ $$2DRIVER$$aarticle
000256018 520__ $$aGoal: Thermography based infection screening at international airports plays an important role in the prevention of pandemics. However, studies show that thermography suffers from low sensitivity and specificity. To achieve higher screeningaccuracy, we developed a screening system based on the acquisition of multiple vital-signs. This multi-modal approach increases accuracy, but introduces the need for sophisticated classification methods. This paper presents a comprehensive analysis of the multi-modal approach to infection screening from a machine learning perspective. Methods: We conduct an empirical study applying six classification algorithms to measurements from the multi-modal screening system and comparing their performance among each other, as well as to the performance of thermography. In addition, we provide an information theoretic view on the use of multiple vital-signs for infection screening. The classification methods are tested using the same clinical data which has beenanalysed in our previous study using linear discriminant analysis. A total of 92 subjects were recruited for influenza screening using the system, consisting of 57 inpatients diagnosed to have seasonal influenza and 35 healthy controls. Results: Our study revealedthat the multi-modal screening system reduces the misclassification rate by more than 50% compared to thermography. At the same time, none of the multi-modal classifiers needed more than 6 ms for classification, which is negligible for practical purposes. Conclusion: Among the tested classifiers k-nearest neighbours, support vector machine and quadratic discriminant analysis achieved the highest cross-validated sensitivity score of 93%. Significance: Multi-modal infection screening might be able to address the shortcomings of thermography.
000256018 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000256018 588__ $$aDataset connected to CrossRef
000256018 7001_ $$0P:(DE-HGF)0$$aSun, Guanghao$$b1
000256018 7001_ $$0P:(DE-HGF)0$$aMatsui, Takemi$$b2
000256018 7001_ $$0P:(DE-HGF)0$$aHakozaki, Yukiya$$b3
000256018 7001_ $$0P:(DE-Juel1)142562$$avan Waasen, Stefan$$b4$$ufzj
000256018 7001_ $$0P:(DE-Juel1)133935$$aSchiek, Michael$$b5$$ufzj
000256018 773__ $$0PERI:(DE-600)2021742-0$$a10.1109/TBME.2015.2479716$$gp. 1 - 1$$n99$$p1 - 1$$tIEEE transactions on biomedical engineering$$vvv$$x1558-2531$$y2015
000256018 8564_ $$uhttps://juser.fz-juelich.de/record/256018/files/tbme-2015-yyao-authors-manuscript.pdf$$yRestricted
000256018 8564_ $$uhttps://juser.fz-juelich.de/record/256018/files/tbme-2015-yyao-authors-manuscript.gif?subformat=icon$$xicon$$yRestricted
000256018 8564_ $$uhttps://juser.fz-juelich.de/record/256018/files/tbme-2015-yyao-authors-manuscript.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000256018 8564_ $$uhttps://juser.fz-juelich.de/record/256018/files/tbme-2015-yyao-authors-manuscript.jpg?subformat=icon-180$$xicon-180$$yRestricted
000256018 8564_ $$uhttps://juser.fz-juelich.de/record/256018/files/tbme-2015-yyao-authors-manuscript.jpg?subformat=icon-640$$xicon-640$$yRestricted
000256018 8564_ $$uhttps://juser.fz-juelich.de/record/256018/files/tbme-2015-yyao-authors-manuscript.pdf?subformat=pdfa$$xpdfa$$yRestricted
000256018 8767_ $$92015-10-15$$d2016-01-14$$ePage charges$$jZahlung erfolgt$$zUSD 250,-
000256018 909CO $$ooai:juser.fz-juelich.de:256018$$popenCost$$pOpenAPC$$pVDB
000256018 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144822$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000256018 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000256018 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133935$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000256018 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000256018 9141_ $$y2015
000256018 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE T BIO-MED ENG : 2014
000256018 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000256018 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000256018 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000256018 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000256018 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000256018 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000256018 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000256018 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000256018 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000256018 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000256018 920__ $$lyes
000256018 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
000256018 980__ $$ajournal
000256018 980__ $$aVDB
000256018 980__ $$aI:(DE-Juel1)ZEA-2-20090406
000256018 980__ $$aUNRESTRICTED
000256018 980__ $$aAPC
000256018 981__ $$aI:(DE-Juel1)PGI-4-20110106