000256078 001__ 256078
000256078 005__ 20210129220618.0
000256078 0247_ $$2doi$$a10.1002/ctpp.201500049
000256078 0247_ $$2ISSN$$a0005-8025
000256078 0247_ $$2ISSN$$a0863-1042
000256078 0247_ $$2ISSN$$a1521-3986
000256078 0247_ $$2WOS$$aWOS:000362980700007
000256078 0247_ $$2altmetric$$aaltmetric:3713116
000256078 037__ $$aFZJ-2015-06101
000256078 041__ $$aEnglish
000256078 082__ $$a570
000256078 1001_ $$0P:(DE-Juel1)162157$$aSadykova, Saltanat$$b0$$eCorresponding author
000256078 245__ $$aA New Scheme for High-Intensity Laser-Driven Electron Acceleration in a Plasma
000256078 260__ $$aWeinheim$$bWiley-VCH$$c2015
000256078 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1448445192_32104
000256078 3367_ $$2DataCite$$aOutput Types/Journal article
000256078 3367_ $$00$$2EndNote$$aJournal Article
000256078 3367_ $$2BibTeX$$aARTICLE
000256078 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000256078 3367_ $$2DRIVER$$aarticle
000256078 520__ $$aWe propose a new approach to high-intensity relativistic laser-driven electron acceleration in a plasma. Here, we demonstrate that a plasma wave generated by a stimulated forward-scattering of an incident laser pulse can be in the longest acceleration phase with injected relativistic beam electrons. This is why the plasma wave has the maximum amplification coefficient which is determined by the acceleration time and the breakdown (overturn) electric field in which the acceleration of the injected beam electrons occurs. We must note that for the longest acceleration phase the relativity of the injected beam electrons plays a crucial role in our scheme. We estimate qualitatively the acceleration parameters of relativistic electrons in the field of a plasma wave generated at the stimulated forward-scattering of a high-intensity laser pulse in a plasma.
000256078 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000256078 588__ $$aDataset connected to CrossRef
000256078 7001_ $$0P:(DE-HGF)0$$aRukhadze, A. A.$$b1
000256078 7001_ $$0P:(DE-HGF)0$$aSamkharadze, T. G.$$b2
000256078 773__ $$0PERI:(DE-600)2018082-2$$a10.1002/ctpp.201500049$$gVol. 55, no. 8, p. 619 - 624$$n8$$p619 - 624$$tContributions to plasma physics$$v55$$x0863-1042$$y2015
000256078 909CO $$ooai:juser.fz-juelich.de:256078$$pVDB
000256078 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162157$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000256078 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000256078 9141_ $$y2015
000256078 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000256078 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000256078 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCONTRIB PLASM PHYS : 2014
000256078 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000256078 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000256078 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000256078 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000256078 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000256078 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000256078 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000256078 980__ $$ajournal
000256078 980__ $$aVDB
000256078 980__ $$aI:(DE-Juel1)JSC-20090406
000256078 980__ $$aUNRESTRICTED