000256082 001__ 256082
000256082 005__ 20210129220618.0
000256082 0247_ $$2doi$$a10.1002/2015JD023517
000256082 0247_ $$2ISSN$$a0148-0227
000256082 0247_ $$2ISSN$$a2156-2202
000256082 0247_ $$2ISSN$$a2169-897X
000256082 0247_ $$2ISSN$$a2169-8996
000256082 0247_ $$2WOS$$aWOS:000363425900010
000256082 0247_ $$2Handle$$a2128/16099
000256082 037__ $$aFZJ-2015-06104
000256082 041__ $$aEnglish
000256082 082__ $$a550
000256082 1001_ $$0P:(DE-HGF)0$$aWu, J. F.$$b0
000256082 245__ $$aA case study of typhoon-induced gravity waves and the orographic impacts related to Typhoon Mindulle (2004) over Taiwan
000256082 260__ $$aHoboken, NJ$$bWiley$$c2015
000256082 3367_ $$2DRIVER$$aarticle
000256082 3367_ $$2DataCite$$aOutput Types/Journal article
000256082 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1512381991_12600
000256082 3367_ $$2BibTeX$$aARTICLE
000256082 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000256082 3367_ $$00$$2EndNote$$aJournal Article
000256082 520__ $$aAtmospheric gravity waves (GWs) significantly influence global circulation. Deep convection, particularly that associated with typhoons, is believed to be an important source of gravity waves. Stratospheric gravity waves induced by Typhoon Mindulle (2004) were detected by the Atmospheric Infrared Sounder (AIRS). Semicircular GWs with horizontal wavelengths of 100–400 km were found over Taiwan through an inspection of AIRS radiances at 4.3 μm. Characteristics of the stratospheric gravity waves generated by Typhoon Mindulle were investigated using the Weather Research and Forecasting (WRF) model. The initial and boundary data were determined by the high-resolution European Center for Medium-Range Weather Forecasts reanalysis data. The WRF simulation reproduces the main features of Typhoon Mindulle and the significant GWs. The simulated GWs with horizontal wavelengths of 100–400 km match the AIRS observations: they propagate upward and eastward, and the westward components are mostly filtered in the stratosphere. By comparing the measured waves with a WRF simulation in the absent of orography (WRF-FLAT), we find that the orographic gravity waves (OGWs) generated by the flow of Typhoon Mindulle over the Central Mountain Range (CMR) in Taiwan account for approximately 50% of the total wave momentum flux in the troposphere. The dominant orientation of the OGW wave fronts is parallel to the CMR rideline. When entering into the stratosphere, OGW propagation is determined by the position of the typhoon center relative to the CMR.
000256082 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000256082 588__ $$aDataset connected to CrossRef
000256082 7001_ $$0P:(DE-HGF)0$$aXue, X. H.$$b1$$eCorresponding author
000256082 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, L.$$b2
000256082 7001_ $$0P:(DE-HGF)0$$aDou, X. K.$$b3
000256082 7001_ $$0P:(DE-HGF)0$$aLi, H. M.$$b4
000256082 7001_ $$0P:(DE-HGF)0$$aChen, T. D.$$b5
000256082 773__ $$0PERI:(DE-600)2016800-7$$a10.1002/2015JD023517$$gp. n/a - n/a$$n18$$p9193–9207$$tJournal of geophysical research / Atmospheres$$v120$$x2169-897X$$y2015
000256082 8564_ $$uhttps://juser.fz-juelich.de/record/256082/files/Wu_et_al-2015-Journal_of_Geophysical_Research__Atmospheres.pdf$$yOpenAccess
000256082 8564_ $$uhttps://juser.fz-juelich.de/record/256082/files/Wu_et_al-2015-Journal_of_Geophysical_Research__Atmospheres.gif?subformat=icon$$xicon$$yOpenAccess
000256082 8564_ $$uhttps://juser.fz-juelich.de/record/256082/files/Wu_et_al-2015-Journal_of_Geophysical_Research__Atmospheres.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000256082 8564_ $$uhttps://juser.fz-juelich.de/record/256082/files/Wu_et_al-2015-Journal_of_Geophysical_Research__Atmospheres.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000256082 8564_ $$uhttps://juser.fz-juelich.de/record/256082/files/Wu_et_al-2015-Journal_of_Geophysical_Research__Atmospheres.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000256082 8564_ $$uhttps://juser.fz-juelich.de/record/256082/files/Wu_et_al-2015-Journal_of_Geophysical_Research__Atmospheres.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000256082 909CO $$ooai:juser.fz-juelich.de:256082$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000256082 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000256082 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000256082 9141_ $$y2015
000256082 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000256082 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000256082 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000256082 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000256082 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000256082 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000256082 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000256082 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ GEOPHYS RES : 2014
000256082 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000256082 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000256082 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000256082 920__ $$lyes
000256082 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000256082 980__ $$ajournal
000256082 980__ $$aVDB
000256082 980__ $$aUNRESTRICTED
000256082 980__ $$aI:(DE-Juel1)JSC-20090406
000256082 9801_ $$aFullTexts