001     256082
005     20210129220618.0
024 7 _ |a 10.1002/2015JD023517
|2 doi
024 7 _ |a 0148-0227
|2 ISSN
024 7 _ |a 2156-2202
|2 ISSN
024 7 _ |a 2169-897X
|2 ISSN
024 7 _ |a 2169-8996
|2 ISSN
024 7 _ |a WOS:000363425900010
|2 WOS
024 7 _ |a 2128/16099
|2 Handle
037 _ _ |a FZJ-2015-06104
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Wu, J. F.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a A case study of typhoon-induced gravity waves and the orographic impacts related to Typhoon Mindulle (2004) over Taiwan
260 _ _ |a Hoboken, NJ
|c 2015
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1512381991_12600
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Atmospheric gravity waves (GWs) significantly influence global circulation. Deep convection, particularly that associated with typhoons, is believed to be an important source of gravity waves. Stratospheric gravity waves induced by Typhoon Mindulle (2004) were detected by the Atmospheric Infrared Sounder (AIRS). Semicircular GWs with horizontal wavelengths of 100–400 km were found over Taiwan through an inspection of AIRS radiances at 4.3 μm. Characteristics of the stratospheric gravity waves generated by Typhoon Mindulle were investigated using the Weather Research and Forecasting (WRF) model. The initial and boundary data were determined by the high-resolution European Center for Medium-Range Weather Forecasts reanalysis data. The WRF simulation reproduces the main features of Typhoon Mindulle and the significant GWs. The simulated GWs with horizontal wavelengths of 100–400 km match the AIRS observations: they propagate upward and eastward, and the westward components are mostly filtered in the stratosphere. By comparing the measured waves with a WRF simulation in the absent of orography (WRF-FLAT), we find that the orographic gravity waves (OGWs) generated by the flow of Typhoon Mindulle over the Central Mountain Range (CMR) in Taiwan account for approximately 50% of the total wave momentum flux in the troposphere. The dominant orientation of the OGW wave fronts is parallel to the CMR rideline. When entering into the stratosphere, OGW propagation is determined by the position of the typhoon center relative to the CMR.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Xue, X. H.
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
700 1 _ |a Hoffmann, L.
|0 P:(DE-Juel1)129125
|b 2
700 1 _ |a Dou, X. K.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Li, H. M.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Chen, T. D.
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1002/2015JD023517
|g p. n/a - n/a
|0 PERI:(DE-600)2016800-7
|n 18
|p 9193–9207
|t Journal of geophysical research / Atmospheres
|v 120
|y 2015
|x 2169-897X
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/256082/files/Wu_et_al-2015-Journal_of_Geophysical_Research__Atmospheres.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/256082/files/Wu_et_al-2015-Journal_of_Geophysical_Research__Atmospheres.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/256082/files/Wu_et_al-2015-Journal_of_Geophysical_Research__Atmospheres.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/256082/files/Wu_et_al-2015-Journal_of_Geophysical_Research__Atmospheres.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/256082/files/Wu_et_al-2015-Journal_of_Geophysical_Research__Atmospheres.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/256082/files/Wu_et_al-2015-Journal_of_Geophysical_Research__Atmospheres.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:256082
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129125
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J GEOPHYS RES : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21