000256092 001__ 256092
000256092 005__ 20220930130048.0
000256092 0247_ $$2Handle$$a2128/10112
000256092 0247_ $$2URN$$aurn:nbn:de:0001-2016063005
000256092 0247_ $$2ISSN$$a1866-1807
000256092 020__ $$a978-3-95806-132-3
000256092 037__ $$aFZJ-2015-06112
000256092 041__ $$aEnglish
000256092 1001_ $$0P:(DE-Juel1)138778$$aWirths, Stephan$$b0$$eCorresponding author$$gmale$$ufzj
000256092 245__ $$aGroup IV Epitaxy for Advanced Nano- and Optoelectronic Applications$$f- 2015-05-26
000256092 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2016
000256092 300__ $$aVI, 116, XXX S.
000256092 3367_ $$2DataCite$$aOutput Types/Dissertation
000256092 3367_ $$2ORCID$$aDISSERTATION
000256092 3367_ $$2BibTeX$$aPHDTHESIS
000256092 3367_ $$02$$2EndNote$$aThesis
000256092 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1467265763_21171
000256092 3367_ $$2DRIVER$$adoctoralThesis
000256092 4900_ $$aSchriften des Forschungszentrums Jülich. Reihe Schlüsseltechnologien / Key Technologies$$v123
000256092 502__ $$aRWTH Aachen, Diss., 2015$$bDr.$$cRWTH Aachen$$d2015
000256092 520__ $$aSn-based group IV semiconductors have attracted increasing scientific interest during the last decade due to their exciting electronic properties, such as a fundamental direct bandgap or high carrier mobility. Whereas these properties have been predicted already in the early 1980’s, the quality of epitaxially grown GeSn and SiGeSn layers on Si and Ge substrates has been limited owing to the low solid solubility of Sn in (Si)Ge (<1 at.%) and the large lattice mismatch (>15 %). Hence, the enormous potential of these material systems regarding its implementation in nano- and optoelectronics has not been exploited to date. A low temperature reduced pressure chemical vapour process using commercially available Ge- and Sn-precursors, namely Ge$_{2}$H$_{6}$ and SnCl$_{4}$, is developed for the growth of GeSn and SiGeSn epilayers directly on Si(001) and on Ge-buffered Si(001). Sn concentrations far beyond the solid solubility of Sn in (Si)Ge are achieved. High growth rates at low growth temperatures assure exceptionally high monocrystalline quality evidenced by exhaustive layer characterization, i.e. transmission electron microscopy, Rutherford backscattering spectrometry, X-ray diffraction or photoluminescence. Moreover, it is shown that the plastic strain relaxation of these (Si)GeSn epilayers on Ge/Si(001) takes place mostly via edge dislocations rather than via threading dislocations as well-known in other group IV systems, i.e. SiGe/Ge. Subsequently, dedicated heterostructures are used for admittance and optical characterization. Highly biaxially tensile strained Ge and GeSn layers grown on GeSn strain relaxed buffer layers are used to fabricate metal oxide semiconductor capacitors in order to investigate the interfacial quality between these narrow bandgap semiconductors and high-k dielectrics. For the investigation of the Nickel metallization process of GeSn and SiGeSn epilayers, Sn concentration above 10 at.% are used. Furthermore, the transition from an indirect to a fundamental direct group IV semiconductor is presented by means of temperature dependent PL measurements on a set of high Sn content GeSn epilayers. Strain relaxed GeSn layers with a Sn concentration of 12.6 at.% grown on Si(001) substrates exhibit high modal gain values at cryogenic temperatures. Finally, the first demonstration of lasing action in direct bandgap group IV Fabry-Perot cavities is presented.
000256092 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000256092 650_7 $$xDiss.
000256092 8564_ $$uhttps://juser.fz-juelich.de/record/256092/files/Schlusseltech_123.pdf$$yOpenAccess
000256092 8564_ $$uhttps://juser.fz-juelich.de/record/256092/files/Schlusseltech_123.gif?subformat=icon$$xicon$$yOpenAccess
000256092 8564_ $$uhttps://juser.fz-juelich.de/record/256092/files/Schlusseltech_123.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000256092 8564_ $$uhttps://juser.fz-juelich.de/record/256092/files/Schlusseltech_123.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000256092 8564_ $$uhttps://juser.fz-juelich.de/record/256092/files/Schlusseltech_123.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000256092 909CO $$ooai:juser.fz-juelich.de:256092$$pVDB$$pdriver$$purn$$popen_access$$popenaire$$pdnbdelivery
000256092 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000256092 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000256092 9141_ $$y2015
000256092 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138778$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000256092 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000256092 920__ $$lyes
000256092 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000256092 980__ $$aphd
000256092 980__ $$aVDB
000256092 980__ $$aI:(DE-Juel1)PGI-9-20110106
000256092 980__ $$aUNRESTRICTED
000256092 9801_ $$aUNRESTRICTED
000256092 9801_ $$aFullTexts