000256093 001__ 256093
000256093 005__ 20210129220619.0
000256093 0247_ $$2doi$$a10.1111/jsr.12300
000256093 0247_ $$2ISSN$$a0962-1105
000256093 0247_ $$2ISSN$$a1365-2869
000256093 0247_ $$2WOS$$aWOS:000363886100011
000256093 0247_ $$2altmetric$$aaltmetric:3945330
000256093 0247_ $$2pmid$$apmid:25900125
000256093 037__ $$aFZJ-2015-06113
000256093 041__ $$aEnglish
000256093 082__ $$a610
000256093 1001_ $$0P:(DE-HGF)0$$aKim, Youngsoo$$b0
000256093 245__ $$aChronic sleep restriction induces long-lasting changes in adenosine and noradrenaline receptor density in the rat brain
000256093 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2015
000256093 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1444652447_31783
000256093 3367_ $$2DataCite$$aOutput Types/Journal article
000256093 3367_ $$00$$2EndNote$$aJournal Article
000256093 3367_ $$2BibTeX$$aARTICLE
000256093 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000256093 3367_ $$2DRIVER$$aarticle
000256093 520__ $$aAlthough chronic sleep restriction frequently produces long-lasting behavioural and physiological impairments in humans, the underlying neural mechanisms are unknown. Here we used a rat model of chronic sleep restriction to investigate the role of brain adenosine and noradrenaline systems, known to regulate sleep and wakefulness, respectively. The density of adenosine A1 and A2a receptors and β-adrenergic receptors before, during and following 5 days of sleep restriction was assessed with autoradiography. Rats (n = 48) were sleep-deprived for 18 h day(-1) for 5 consecutive days (SR1-SR5), followed by 3 unrestricted recovery sleep days (R1-R3). Brains were collected at the beginning of the light period, which was immediately after the end of sleep deprivation on sleep restriction days. Chronic sleep restriction increased adenosine A1 receptor density significantly in nine of the 13 brain areas analysed with elevations also observed on R3 (+18 to +32%). In contrast, chronic sleep restriction reduced adenosine A2a receptor density significantly in one of the three brain areas analysed (olfactory tubercle which declined 26-31% from SR1 to R1). A decrease in β-adrenergic receptors density was seen in substantia innominata and ventral pallidum which remained reduced on R3, but no changes were found in the anterior cingulate cortex. These data suggest that chronic sleep restriction can induce long-term changes in the brain adenosine and noradrenaline receptors, which may underlie the long-lasting neurocognitive impairments observed in chronic sleep restriction.
000256093 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000256093 588__ $$aDataset connected to CrossRef
000256093 7001_ $$0P:(DE-Juel1)131679$$aElmenhorst, David$$b1$$eCorresponding author$$ufzj
000256093 7001_ $$0P:(DE-Juel1)131712$$aWeisshaupt, Angela$$b2$$ufzj
000256093 7001_ $$0P:(DE-Juel1)131711$$aWedekind, Franziska$$b3$$ufzj
000256093 7001_ $$0P:(DE-Juel1)131691$$aKroll, Tina$$b4$$ufzj
000256093 7001_ $$0P:(DE-HGF)0$$aMccarley, Robert W.$$b5
000256093 7001_ $$0P:(DE-HGF)0$$aStrecker, Robert E.$$b6
000256093 7001_ $$0P:(DE-Juel1)131672$$aBauer, Andreas$$b7$$ufzj
000256093 773__ $$0PERI:(DE-600)2007459-1$$a10.1111/jsr.12300$$gVol. 24, no. 5, p. 549 - 558$$n5$$p549 - 558$$tJournal of sleep research$$v24$$x0962-1105$$y2015
000256093 8564_ $$uhttp://europepmc.org/articles/PMC4583343;jsessionid=o0OWS4O799GaRIVcz9pB.21
000256093 8564_ $$uhttps://juser.fz-juelich.de/record/256093/files/nihms-691329.pdf$$yRestricted
000256093 8564_ $$uhttps://juser.fz-juelich.de/record/256093/files/nihms-691329.gif?subformat=icon$$xicon$$yRestricted
000256093 8564_ $$uhttps://juser.fz-juelich.de/record/256093/files/nihms-691329.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000256093 8564_ $$uhttps://juser.fz-juelich.de/record/256093/files/nihms-691329.jpg?subformat=icon-180$$xicon-180$$yRestricted
000256093 8564_ $$uhttps://juser.fz-juelich.de/record/256093/files/nihms-691329.jpg?subformat=icon-640$$xicon-640$$yRestricted
000256093 8564_ $$uhttps://juser.fz-juelich.de/record/256093/files/nihms-691329.pdf?subformat=pdfa$$xpdfa$$yRestricted
000256093 909CO $$ooai:juser.fz-juelich.de:256093$$pVDB
000256093 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131679$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000256093 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131712$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000256093 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131711$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000256093 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131691$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000256093 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131672$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000256093 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000256093 9141_ $$y2015
000256093 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ SLEEP RES : 2014
000256093 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000256093 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000256093 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000256093 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000256093 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000256093 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000256093 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000256093 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000256093 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000256093 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000256093 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x0
000256093 980__ $$ajournal
000256093 980__ $$aVDB
000256093 980__ $$aI:(DE-Juel1)INM-2-20090406
000256093 980__ $$aUNRESTRICTED