001     256093
005     20210129220619.0
024 7 _ |a 10.1111/jsr.12300
|2 doi
024 7 _ |a 0962-1105
|2 ISSN
024 7 _ |a 1365-2869
|2 ISSN
024 7 _ |a WOS:000363886100011
|2 WOS
024 7 _ |a altmetric:3945330
|2 altmetric
024 7 _ |a pmid:25900125
|2 pmid
037 _ _ |a FZJ-2015-06113
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Kim, Youngsoo
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Chronic sleep restriction induces long-lasting changes in adenosine and noradrenaline receptor density in the rat brain
260 _ _ |a Oxford [u.a.]
|c 2015
|b Wiley-Blackwell
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1444652447_31783
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Although chronic sleep restriction frequently produces long-lasting behavioural and physiological impairments in humans, the underlying neural mechanisms are unknown. Here we used a rat model of chronic sleep restriction to investigate the role of brain adenosine and noradrenaline systems, known to regulate sleep and wakefulness, respectively. The density of adenosine A1 and A2a receptors and β-adrenergic receptors before, during and following 5 days of sleep restriction was assessed with autoradiography. Rats (n = 48) were sleep-deprived for 18 h day(-1) for 5 consecutive days (SR1-SR5), followed by 3 unrestricted recovery sleep days (R1-R3). Brains were collected at the beginning of the light period, which was immediately after the end of sleep deprivation on sleep restriction days. Chronic sleep restriction increased adenosine A1 receptor density significantly in nine of the 13 brain areas analysed with elevations also observed on R3 (+18 to +32%). In contrast, chronic sleep restriction reduced adenosine A2a receptor density significantly in one of the three brain areas analysed (olfactory tubercle which declined 26-31% from SR1 to R1). A decrease in β-adrenergic receptors density was seen in substantia innominata and ventral pallidum which remained reduced on R3, but no changes were found in the anterior cingulate cortex. These data suggest that chronic sleep restriction can induce long-term changes in the brain adenosine and noradrenaline receptors, which may underlie the long-lasting neurocognitive impairments observed in chronic sleep restriction.
536 _ _ |a 571 - Connectivity and Activity (POF3-571)
|0 G:(DE-HGF)POF3-571
|c POF3-571
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Elmenhorst, David
|0 P:(DE-Juel1)131679
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Weisshaupt, Angela
|0 P:(DE-Juel1)131712
|b 2
|u fzj
700 1 _ |a Wedekind, Franziska
|0 P:(DE-Juel1)131711
|b 3
|u fzj
700 1 _ |a Kroll, Tina
|0 P:(DE-Juel1)131691
|b 4
|u fzj
700 1 _ |a Mccarley, Robert W.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Strecker, Robert E.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Bauer, Andreas
|0 P:(DE-Juel1)131672
|b 7
|u fzj
773 _ _ |a 10.1111/jsr.12300
|g Vol. 24, no. 5, p. 549 - 558
|0 PERI:(DE-600)2007459-1
|n 5
|p 549 - 558
|t Journal of sleep research
|v 24
|y 2015
|x 0962-1105
856 4 _ |u http://europepmc.org/articles/PMC4583343;jsessionid=o0OWS4O799GaRIVcz9pB.21
856 4 _ |u https://juser.fz-juelich.de/record/256093/files/nihms-691329.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/256093/files/nihms-691329.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/256093/files/nihms-691329.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/256093/files/nihms-691329.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/256093/files/nihms-691329.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/256093/files/nihms-691329.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:256093
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131679
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131712
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131711
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131691
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131672
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|2 G:(DE-HGF)POF3-500
|v Connectivity and Activity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J SLEEP RES : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|k INM-2
|l Molekulare Organisation des Gehirns
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21