000256097 001__ 256097
000256097 005__ 20210129220620.0
000256097 0247_ $$2doi$$a10.1109/JSTARS.2015.2458855
000256097 0247_ $$2ISSN$$a1939-1404
000256097 0247_ $$2ISSN$$a2151-1535
000256097 0247_ $$2WOS$$aWOS:000368904000004
000256097 037__ $$aFZJ-2015-06117
000256097 041__ $$aEnglish
000256097 082__ $$a520
000256097 1001_ $$0P:(DE-HGF)0$$aCavallaro, Gabriele$$b0$$eCorresponding author
000256097 245__ $$aOn Understanding Big Data Impacts in Remotely Sensed Image Classification Using Support Vector Machine Methods
000256097 260__ $$aNew York, NY$$bIEEE$$c2015
000256097 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1444725576_31777
000256097 3367_ $$2DataCite$$aOutput Types/Journal article
000256097 3367_ $$00$$2EndNote$$aJournal Article
000256097 3367_ $$2BibTeX$$aARTICLE
000256097 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000256097 3367_ $$2DRIVER$$aarticle
000256097 520__ $$aOwing to the recent development of sensor resolutions onboard different Earth observation platforms, remote sensing is an important source of information for mapping and monitoring natural and man-made land covers. Of particular importance is the increasing amounts of available hyperspectral data originating from airborne and satellite sensors such as AVIRIS, HyMap, and Hyperion with very high spectral resolution (i.e., high number of spectral channels) containing rich information for a wide range of applications. A relevant example is the separation of different types of land-cover classes using the data in order to understand, e.g., impacts of natural disasters or changing of city buildings over time. More recently, such increases in the data volume, velocity, and variety of data contributed to the term big data that stand for challenges shared with many other scientific disciplines. On one hand, the amount of available data is increasing in a way that raises the demand for automatic data analysis elements since many of the available data collections are massively underutilized lacking experts for manual investigation. On the other hand, proven statistical methods (e.g., dimensionality reduction) driven by manual approaches have a significant impact in reducing the amount of big data toward smaller smart data contributing to the more recently used terms data value and veracity (i.e., less noise, lower dimensions that capture the most important information). This paper aims to take stock of which proven statistical data mining methods in remote sensing are used to contribute to smart data analysis processes in the light of possible automation as well as scalable and parallel processing techniques. We focus on parallel support vector machines (SVMs) as one of the best out-of-the-box classification methods.
000256097 536__ $$0G:(DE-HGF)POF3-512$$a512 - Data-Intensive Science and Federated Computing (POF3-512)$$cPOF3-512$$fPOF III$$x0
000256097 588__ $$aDataset connected to CrossRef
000256097 7001_ $$0P:(DE-Juel1)132239$$aRiedel, Morris$$b1
000256097 7001_ $$0P:(DE-Juel1)145217$$aRicherzhagen, Matthias$$b2
000256097 7001_ $$0P:(DE-HGF)0$$aBenediktsson, Jon Atli$$b3
000256097 7001_ $$0P:(DE-HGF)0$$aPlaza, Antonio$$b4
000256097 773__ $$0PERI:(DE-600)2457423-5$$a10.1109/JSTARS.2015.2458855$$gp. 1 - 13$$p1 - 13$$tIEEE journal of selected topics in applied earth observations and remote sensing$$v99$$x2151-1535$$y2015
000256097 8564_ $$uhttps://juser.fz-juelich.de/record/256097/files/07185322.pdf$$yRestricted
000256097 8564_ $$uhttps://juser.fz-juelich.de/record/256097/files/07185322.gif?subformat=icon$$xicon$$yRestricted
000256097 8564_ $$uhttps://juser.fz-juelich.de/record/256097/files/07185322.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000256097 8564_ $$uhttps://juser.fz-juelich.de/record/256097/files/07185322.jpg?subformat=icon-180$$xicon-180$$yRestricted
000256097 8564_ $$uhttps://juser.fz-juelich.de/record/256097/files/07185322.jpg?subformat=icon-640$$xicon-640$$yRestricted
000256097 8564_ $$uhttps://juser.fz-juelich.de/record/256097/files/07185322.pdf?subformat=pdfa$$xpdfa$$yRestricted
000256097 909CO $$ooai:juser.fz-juelich.de:256097$$pVDB
000256097 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aUniversity of Iceland $$b0
000256097 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132239$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000256097 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)132239$$aUniversity of Iceland $$b1
000256097 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145217$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000256097 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aUniversity of Iceland $$b3
000256097 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aUniversity of Extremadura $$b4
000256097 9131_ $$0G:(DE-HGF)POF3-512$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vData-Intensive Science and Federated Computing$$x0
000256097 9141_ $$y2015
000256097 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE J-STARS : 2014
000256097 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000256097 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000256097 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000256097 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000256097 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000256097 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000256097 920__ $$lyes
000256097 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000256097 980__ $$ajournal
000256097 980__ $$aVDB
000256097 980__ $$aI:(DE-Juel1)JSC-20090406
000256097 980__ $$aUNRESTRICTED