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Force-based models describe pedestrian dynamics in analogy to classical mechanics by a system of second

order ordinary differential equations. By investigating the linear stability of two main classes of forces, parameter

regions with unstable homogeneous states are identified. In this unstable regime it is then checked whether

phase transitions or stop-and-go waves occur. Results based on numerical simulations show, however, that the

investigated models lead to unrealistic behavior in the form of backwards moving pedestrians and overlapping.

This is one reason why stop-and-go waves have not been observed in these models. The unrealistic behavior

is not related to the numerical treatment of the dynamic equations but rather indicates an intrinsic problem of

this model class. Identifying the underlying generic problems gives indications how to define models that do not

show such unrealistic behavior. As an example we introduce a force-based model which produces realistic jam

dynamics without the appearance of unrealistic negative speeds for empirical desired walking speeds.
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I. INTRODUCTION

Mathematical models based on ideas from physics can

improve our understanding of the characteristics of crowds

and give useful insights into their dynamics. From a more

practical point of view such models have applications, e.g.,

in safety analysis of large public events where they may help

predicting critical situations, allowing preventive measures.

A popular class of models is of microscopic nature,

describing the dynamics of crowds by specifying properties

of individuals and defining their interactions. The most

elaborated models belong either to the subclass of rule-based

models that are discrete in space (i.e., cellular automata), or to

force-based models continuous in space, which are described

by a system of second order ordinary differential equations

[1–4].

Especially for applications in safety analysis, models that

are validated qualitatively and quantitatively are required.

Quantitative validation of pedestrian dynamics consists of

measuring density, velocity, and flow in simulations and

comparing them with empirical data. The relation between

these quantities, also called the fundamental diagram, is

widely considered as the most important criterion to validate

simulation results [5,6]. Besides this quantitative validation

often the focus is more on the reproduction of qualitative

properties, especially collective effects. Most of the force-

based models are in fact able to describe fairly well some

of those phenomena, e.g., lane formation [7,8], oscillations

at bottlenecks [7,9], the “faster-is-slower” effect [10,11], and

clogging at bottlenecks [8,9], that sometimes are difficult to

verify empirically [12,13].

An often observed collective phenomenon that emerges in

crowds, especially when the density exceeds a critical value,

is stop-and-go waves [2]. Although some space-continuous
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models [14–17] reproduce partly this phenomenon, force-

based models generally fail to describe pedestrian dynamics in

jam situations correctly. Instead in some situations quite often

unrealistic behavior like backward motion or overtaking (“tun-

neling”) is observed, especially in one-dimensional single-file

scenarios. Recently, it has been shown [18] that this is not a

consequence of numerical problems in the treatment of the

differential equations, but an indication of inherent problems

of force-based models, at least for certain classes of forces.

In vehicular traffic, the formation of jams and the dynamics

of traffic waves have been studied intensively [19–22]. Traffic

jams in simulations occur as a result of phase transitions

from a stable homogeneous configuration to an unstable

configuration. That means it should be possible to calibrate

model parameters such that systems in unstable regimes can be

simulated. Otherwise, a reproduction of jams is impossible and

the model can be qualified as unrealistic. For each parameter

set that leads to an unstable homogeneous state it has to be

verified by simulations whether this instability corresponds to

realistic behavior (i.e., the occurrence of jams) or unrealistic

behavior (e.g., overlapping of particles). A certain amount of

overlapping might be acceptable as it could be interpreted

as “elasticity” of the particles. Generically, however, the

amount of overlapping is not limited in these models and even

tunneling of particles is observed.

In pedestrian dynamics, numerous force-based models have

been developed based on physical analogies, i.e., Newtonian

dynamics. Pedestrian dynamics is described as a deviation

from a predefined desired direction resulting from forces acting

on each pedestrian. These forces are not fundamental physical

forces, but effective forces that give a physical interpretation of

the decisions made by pedestrians. Therefore, the forces cannot

be measured directly but only via their effects on the motion,

i.e., the observed accelerations. This might be one reason why

in the literature a diversity of models has been proposed, e.g.,

based on algebraically decaying forces, exponential forces, etc.

Although the force-based ansatz is elegant and to some extent
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helpful in describing the dynamics of pedestrians, it has some

intrinsic problems that we will discuss in this paper. These

problems were observed earlier and have lead to modifications

of the original models by introducing additional forces, like a

physical force, or even restrictions on the state variables.

Köster et al. [23] gave a thorough analysis of the numerical

problems that are encountered when simulating pedestrian

dynamics with force-based models. As shown in [23,24]

the problem of oscillations in the trajectories of pedestrian

(backwards movement) is an intrinsic problem of second order

models, not (only) a numerical one due to the accuracy of

the numerical solver. In [18] an analytical investigation of

the social force model in one-dimensional space proved that

oscillations can only be avoided by choosing values in some

defined parameter spaces. Unfortunately, these parameter

values are either unrealistic (if they have a physical meaning)

or they lead to a large amount of overlapping (and in

extreme cases, e.g., high densities, tunneling) of pedestrians.

This so-called overlapping-oscillation duality is discussed

in more detail in [25,26]. These problems, that often lead

to a “complexification” of the original (elegant) ansatz of

force-based models, may explain the paradigm shift observed

lately with the emergence of improved first-order models or

so-called “velocity models” [14,17,27–33].

In this work we introduce a classification of force-based

models according to the form of the repulsive force. The

stability properties of each class can be investigated separately

in a unified way. Analytical criteria that ensure reproduction

of stop-and-go waves in terms of the instability of uniform

single-file motion are derived. Furthermore, we analyze the

influence of specific parameters of the overall behavior of

the investigated model. A focus is on the analytical forms of

the models, and not on eventual numerical difficulties. Based

on numerical simulations we show that the investigated models

behave unrealistically in unstable regimes, which is manifested

in negative speeds (movement in the opposite of the desired

direction) and oscillations in position of pedestrians (leads

to nonphysical overlapping). After identifying the origin of

this unrealistic behavior we attempt to develop a model that

mitigates these problems. We observe that this model shows

phase separation in its unstable regime, in agreement with

empirical results [34]. We conclude with a discussion of the

results and analysis of their consequences as well as a detailed

discussion of the limitation of the proposed model in special

and force-based models in general.

II. MODEL DEFINITION

Pedestrian dynamics is generically a two-dimensional

problem. In order to reduce the complexity and to capture

the essentials of the jamming dynamics, we focus here on

1D systems. Furthermore we assume an asymmetric nearest-

neighbor interaction where the motion of a pedestrian is only

influenced by the person immediately in front. N pedestrians

are initially distributed uniformly in a one-dimensional space

with periodic boundary conditions. Important information can

then be derived from the reaction of the system in the uniform

steady state to small perturbations.

For the state variables position xn and velocity ẋn = dxn

dt

of pedestrian n we define the distance of the centers �xn

n n + 1

n − 1

an dn

∆xn

FIG. 1. (Color online) Definition of the quantities characterizing

the single-file motion of pedestrians (represented by rectangles).

and the relative velocity �ẋn of two successive pedestrians,

respectively, as (see Fig. 1)

�xn = xn+1 − xn, �ẋn = ẋn+1 − ẋn. (1)

For convenience, we will mainly use dimensionless quanti-

ties in the following. These are defined by the transformation

t → t ′ =
t

τ
and xn → x ′

n =
xn

a0

, (2)

with time constant τ and the length constant a0. To simplify

the notation we denote the rescaled velocity by ẋ ′
n = dx ′

n/dt ′.

In general, pedestrians are modeled as simple geometric

objects of constant size, e.g., a circle or ellipse. In one-

dimensional space the size of pedestrians is characterized by an

(Fig. 1), i.e., their length is 2an. However, it is well known that

the space requirement of a pedestrian depends on its velocity

and is defined in a general way as a linear function of the

velocity [35]

an = a0 + av ẋn. (3)

In the following, the parameter a0, characterizing the space

requirement of a standing person, will be used as length scale

for the dimensionless quantities (2). Note that the parameter

av � 0 has the dimension of time. The dimensionless spacing

a′
n = an/a0 is written as

a′
n = 1 + ãv ẋ

′
n, with ãv =

av

τ
. (4)

The effective distance (distance gap) dn of two consecutive

pedestrians becomes in dimensionless form

d ′
n =

dn

a0

= �x ′
n − a′

n − a′
n+1 = �x ′

n − ãv(ẋ ′
n + ẋ ′

n+1) − 2.

(5)

The dynamical equation of force-based models is usually

defined as the superposition of a repulsive force f and a driving

term g [36]. The driving term is of central importance and the

standard form used is

g(ẋn) =
v0 − ẋn

τ
. (6)

Typical values for the parameters are τ = 0.5 s for the

relaxation time and v0 = 1.2 m/s for the desired speed. Note

that τ is the same time scale used in Eq. (2). This definition

gives rise to exponential acceleration to v0 in free-flow

movement. The equation of motion for pedestrian n has the

generic form

ẍn = f (ẋn,�ẋn,�xn) + g(ẋn)· (7)
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In this work we limit ourselves to models that incorporate

(6) as driving term and investigate the stability of sev-

eral force-based models, defined through different functions

f (·) corresponding to repulsive forces that either decay

algebraically or exponentially with distance. We consider

unidimensional dynamics and totally asymmetric interaction

with the predecessor and assume that the repulsive forces

are negative. We determine their instability regions where

the investigated model may be able to reproduce stop-and-go

waves. Technical details of the stability analysis, which is a

standard tool that can lead to cumbersome calculations, are

deferred to the Appendix which provides all relevant results.

III. MODELS WITH ALGEBRAICALLY

DECAYING FORCES

In this section we consider force-based models with an

algebraically decaying repulsive term, i.e.,

f (ẋn,�ẋn,�xn) ∝ 1/(dn)q . (8)

More specifically, we consider the following dimensionless

equation of motion:

ẍ ′
n = −

(µ + δ · rε(�ẋ ′
n))2

d ′
n
q + v′

0 − ẋ ′
n, (9)

with a dimensionless parameter µ � 0 to adjust the strength

of the force, the dimensionless desired speed v′
0 = v0τ

a0
> 0,

and constants δ � 0 and q > 0. In two-dimensional space

the case q < 1 corresponds to a long-ranged repulsive force,

whereas the force is short ranged for q > 1. Note that the

definition of the model implies that each pedestrian only

interacts with its predecessor. Equation (9) can be interpreted

as an extension of the generalized centrifugal force model [25]

which corresponds to the special case δ = 1. The differentiable

function,

rε(x) = ε log(1 + e−x/ε) (0 < ε ≪ 1), (10)

is an approximation of the nondifferentiable ramp function

r(x) =

{

0, x � 0,

−x, else,
(11)

as ε → 0 (see Fig. 2). This function suppresses the repulsive

effect of a predecessor moving faster than the follower. (We

will set ε = 0.1 in the simulations.)

A. Model classification

The model class defined by Eq. (9) depends on four

(dimensionless) parameters µ, δ, q, and ãv [which enters

via (5)] and includes several models studied previously. In

the following each model will by specified by the quadruple

Q = 〈µ,δ,q,ãv〉. As we will see later the parameters δ and

ãv are most critical for the dynamics described by Eq. (9).

The parameter δ controls the influence of the relative velocity,

whereas ãv determines the velocity dependence of the effective

size of the pedestrians. Although in principle δ can be any real

number, in most known models it takes only discrete values in

{0,1}.

In the centrifugal force model (CFM) [8] the size of the

pedestrians is independent of their speed. In addition, the

FIG. 2. (Color online) Approximations rε(·) of the ramp function

r(·) (thick line). In the simulations we use ε = 0.1.

CFM considers the effects of the relative velocity �ẋn, such

that slow pedestrians are not effected by faster ones. Hence

we can define the CFM as Q = 〈0,1,1,0〉. In contrast to

the CFM, the generalized centrifugal force model (GCFM)

[25] includes both components—the relative velocity and the

velocity dependence of the volume exclusion [37]. Addition-

ally, to avoid overlapping of pedestrians that results from

repulsive forces among pedestrians that are too small, moving

nearly in lockstep, a non-negative constant µ is added to the

relative velocity. Thus the GCFM corresponds to the case

Q = 〈µ,1,1,ãv〉.

Another model that represents pedestrians with constant

circles and thus has ãv = 0 was introduced in Ref. [38]

which we will refer to as HFV (Helbing, Farkas, and Vicsek).

Different to the CFM and GCFM, in HFV the effects of

the relative velocity are ignored so that the HFV can be

characterized by Q = 〈µ,0,2,0〉. In Ref. [39] an enhancement

of the HFV was introduced by Seyfried et al. (SEY) consisting

on a velocity-dependent space requirement, i.e., Q = 〈µ �=

0,0,2,ãv �= 0〉. Furthermore, in Refs. [40,41] Guo et al.

investigated a slightly different model (GUO) with the focus

on navigation in two-dimensional space. The GUO model can

be classified as Q = 〈µ,0,1,0〉. Similar models introducing

new features have been proposed in Refs. [42] and [43] with

a constant added to the denominator of f (·). They correspond

to the case Q = 〈µ,0,2,0〉.

In Table I a brief summary of the aforementioned models

is given.

Some force-based model rely on additional algorith-

mic solutions like collision detection techniques [8] or a

TABLE I. Q values of the investigated models with algebraically

decaying forces.

Model Q = 〈µ,δ,q,ãv〉

CFM 〈0,1,1,0〉

GCFM 〈µ,1,1,ãv〉

HFV 〈µ,0,2,0〉

SEY 〈µ,0,2,ãv〉

GUO 〈µ,0,1,0〉
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FIG. 3. (Color online) Stability region of the algebraically decaying models with respect to µ and d ′. Left: Q = 〈µ,0,2,0〉. Middle:

Q = 〈µ,1,2,0〉. Right: Q = 〈µ,0,2,0.2〉. The colors are mapped to the value of � in Eq. (17). Negative values of � indicate stability regions.

time-to-collision constant [44] that allows one to manage

collisions in simulations. Other models rely on optimization

algorithms to define the desired direction of pedestrians

[45] depending on the situation of every pedestrian in the

simulation. While these additional components may prove to

be useful for numerical simulations, they have the downside

of adding more complexity to the model while stretching the

concept of force-based modeling beyond the original idea.

In some models, e.g. [44], these components are strongly

correlated with the forces, which complicates the analytical

investigation of the “pure” force model. Therefore, in this

paper the analytical investigation is limited solely to the force-

based models that can be formulated without any additional

algorithmic components.

B. Linear stability

We study the linear stability of the system (9) for a given

set Q of parameters. The positions of the pedestrians in the

homogeneous steady state are given by

yn =
1

a0

(
n

ρ
+ vt

)

, (12)

so that yn+1 − yn = 1
a0ρ

= �y, ẏn = vτ/a0 = v′, and ÿn = 0

for all n, where derivatives are taken with respect to t ′. Now we

consider small (dimensionless) perturbations ǫn of the steady

state positions,

x ′
n = yn + ǫn· (13)

For perturbations of the form

ǫn(t) = αne
zt , (14)

with αn,z ∈ C we then find (expanding to first order)

z2 = δγ
eik − 1

d ′q
z − φãv(eik + 1)z + φ(eik − 1) − z, (15)

with γ = µ + δε log(2), φ =
qγ 2

d ′q+1 , and k = 2πl/N with l =

0, . . . ,N − 1. Details of the derivation can be found in the

Appendix, Sec. A 1.

For k ≈ 0 we can expand z as a polynomial in k:

z = z(0)k + z(1)k2 + · · · . (16)

Up to second order we then find the stability condition (see

Appendix, Sec. A 1 a)

γ > 0, � := φω −
δγ

d ′q
− 1

2
< 0· (17)

Here d ′ = �y − 2ãvv − 2, with ãv = av/τ and ω =

1/(2ãvφ + 1). The stability condition (17) suggests that mod-

els of type Q = 〈µ �= 0,0,q,0〉, e.g., the HFV, GUO models,

tend to instability with increasing density and increasing

strength of the force (µ), because � simplifies to φ − 1
2
.

Adding the influence of the relative speed (δ �= 0) leads to

a comparable structure (compare Fig. 3, left and middle).

Modifying these models by introducing a velocity-

dependent enlargement of pedestrians, i.e., considering models

in class Q = 〈µ �= 0,0,q,ãv �= 0〉, leads to � = φω − 1
2
, with

smaller ω by increasing ãv , which has a stabilizing effect on the

system (see Fig. 3, right). This means the velocity dependence

in this kind of models enhances the stability of the system. In

comparison, the impact of the relative velocity on the stability

of the system is less significant.

Inverting the sign of δ adds a positive term to φω2 in the

expression of �, which increases the instability of the system.

Although negative values of δ give rise to instabilities, they

are physically not relevant, since that would imply that a faster

pedestrian in front has more influence on a slower pedestrian

directly behind.

C. Simulations

We solve the system of equations (9) for N = 67 using

Heun’s scheme with time step �t = 10−5 s. According to [46]

Heun’s scheme seems to be the best scheme for simulations

of pedestrian dynamics for many practical scenarios. For all

simulations performed in this work we use this scheme with

an unchanged �t .

Pedestrians are uniformly distributed in a one-dimensional

system with periodic boundary conditions and length L =

200 m. The chosen values of N and L lead to d ′ ≈ 1 (ãv = 0).

v′
0 = 3. The initial velocities are set to zero. The maximum

simulation time is �t = 2000 s. Only the initial position of the

first pedestrian is slightly perturbed, i.e., ǫ1 = 10−4 (ǫn�=1 =

0).

With � = 0 in Eq. (A24) we obtain for δ = ãv = 0 the

critical value for µ as µcr =

√

d ′q+1

2q
. Therefore, a model of type

Q = 〈0.45,0,2,0〉 is stable since µ = 0.45 is smaller than this

critical value µcr = 1
2
.
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FIG. 4. Standard deviation of the speeds with respect to simulation time. The initial perturbation in the speed disperses to zero when the

system is stable (left: µ = 0.45), while it grows when the system is unstable (right with µ = 0.55).

To observe the behavior of the system in the unstable regime

we perform simulations for a parameter set Q = 〈0.55,0,2,0〉

with µ > µcr. The simulations show an oscillatory behavior

that leads inevitably to overlapping among pedestrians. Note

that the model is not defined when the distance d ′ is zero; see

Eq. (9). This phenomenon (overlapping) is a stopping criterion

for the simulation.

Since all pedestrians start with speed zero and due to the

small perturbation of the initial position (ǫ1) the speeds of

pedestrians in the beginning of simulations are perturbed too.

However, depending on the state of the system this initial

perturbation may disperse to zero if the system is stable.

Otherwise, it will grow until the simulation is stopped due

to overlapping. Figure 4 shows a comparison between the

time evolution of the speed’s standard deviation for both cases

Q = 〈0.45,0,2,0〉 and Q = 〈0.55,0,2,0〉.

We conclude that in the unstable regime the investigated

models with algebraic forces lead to negative velocities (back-

ward movement) and hence unrealistic behavior. Introducing

a velocity-dependent enlargement of pedestrians stabilizes the

system, but the unstable regime remains unrealistic since the

volume exclusion of a pedestrian (a′
n) with a negative speed

can become negative.

IV. EXPONENTIAL-DISTANCE MODELS

In this section we consider models with

f (ẋn,�xn) ∝ exp(−d ′
n), (18)

i.e., exponentially decaying repulsive forces using use the

notation introduced in the previous section.

The paradigmatic model in this class is arguably the

social force model (SFM) as originally introduced in [47].

Further modifications and enhancements followed. In [48] a

physical force was introduced to mitigate overlapping among

pedestrians. Lakoba et al. [10] studied the calibration of the

modified SFM by improving the numerical efficiency of the

model and introducing several enhancements. The calibration

of the modified SFM was investigated again in [49] by means

of an evolutionary optimization algorithm. Parisi et al. [50]

investigated the difficulties of SFM concerning quantitative

description of pedestrian dynamics by introducing a mech-

anism, called “respect mechanism” to mitigate overlapping

among pedestrians. Finally, in Ref. [51] an interesting ansatz

to calibrate the SFM by means of experimental measurements

led to a modified repulsive force that includes the effect of

the distance as well as the angle between two pedestrians.

However, these measurements, basically from experiments

with two pedestrians, are extrapolated to a crowd with several

individuals. Hence it implicitly assumes that the superposition

of forces can be applied. This hypothesis, however, lacks

experimental evidence in the context of pedestrian dynamics.

Often different specifications of the repulsive force are

adopted, in the form of circular or elliptical equipotential lines.

However, for a one-dimensional analysis both specifications

are equivalent. In comparison to the models with algebraic

forces the exponential force has no singularity at d ′ = 0. Hence

it is defined for all distances and no regularization is required.

A. Linear stability

One common point among the aforementioned models

is their consideration of a “physical” force to mitigate

overlapping among pedestrians. For the stability analysis we

therefore consider the following system using dimensionless

variables:

ẍ ′
n = −a exp

(

−
d ′

n

b

)

− c rε(d ′
n) + v′

0 − ẋ ′
n, (19)

with a, b, and c dimensionless positive constants, d ′
n as defined

in (5), v′
0 = v0τ

a0
, and rε(·) the function (10).

The general form of these models contains five parameters.

However, the value for τ was determined empirically in

[51,52]. That means the system (19) can be defined by the

quadruple

Q̃ = 〈a,b,c,ãv〉. (20)

Similarly to Sec. III B we consider the effect of small

perturbations ǫn(t) = αne
zt to the steady state positions yn.

After some calculations outlined in the Appendix Sec. A 2 we

obtain the following stability condition

�̃ := − 1
2

+ c̃α < 0, (21)

with α = 1

2b̃−1
, b̃ = ãv c̃, c̃ = ã/b − 1

2
c, and ã =

−a exp(−d ′/b).

Assuming d ′ is positive, which means rε(·) vanishes or

simply c = 0, and the enlargement of pedestrians is constant
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FIG. 5. (Color online) Stability region of a modified SFM (Q̃ = 〈a,b,0,0〉) with respect to a and b for different densities. Left: d ′ = 2.5 .

Middle: d ′ = 1.5 . Right: d ′ = 0.5 . The colors are mapped to the values of �̃ [Eq. (23)]. Negative values indicate stability regions.

(ãv = 0), we obtain

b̃ = 0, α = −1, (22)

and

�̃ = −
1

2
+

a

b
exp(−d ′/b). (23)

Figure 5 depicts the stability regions for the Q̃ = 〈a,b,0,0〉-

class models in the (a, b)-plane.

To investigate the effect of a velocity-dependent enlarge-

ment of pedestrians we evaluate the stability regions of

Q̃ = 〈4,b,0,ãv〉-class models. The value of a = 4 is according

to Fig. 5 large enough to lay in an unstable region.

In Fig. 6 we observe that a system with a velocity-dependent

enlargement (ãv �= 0) becomes increasingly stable in the (ã,b)

space with decreasing density. This confirms the observation

made in the previous section: velocity-dependent enlargement

of pedestrians has a stabilizing effect on the system.

B. Simulations

Similar to Sec. III C we perform simulations with the

exponential-distance models for different parameters. The

same initial values and parameters as in Sec. III C are

considered. N = 57 pedestrians are uniformly distributed,

which corresponds to d ′ ≈ 1.5.

For av = c = 0, the critical value of a in dependence of b

is given by acr = b
2 exp(−d ′/b)

. Accordingly, we choose b = 1.5

and a = 3, which yield an unstable system (compare also to

Fig. 5).

Here again we make the same observation as with alge-

braically decaying models (Sec. III C). In the unstable regime

a Q̃ = 〈a,b,0,0〉 models behave unrealistically. Instead of

jams, collisions occur. Based on the time series of the speed’s

standard deviation, we compare the behavior of the model in a

stable and an unstable regime [defined according to Eq. (21)].

Figure 7, left, shows as expected for Q̃ = 〈1.5,1.5,0,0〉 that

the standard deviation of the speed decreases to zero and the

overall system converges to an homogeneous state, whereas it

grows until the simulation interruption (Q̃ = 〈3,1.5,0,0〉).

V. MODEL

In the previous sections we investigated properties of

several force-based models related to jam formation. The

linear stability analysis of these models yields conditions that

determine parameter regions where unstable behavior may

lead to stop-and-go waves in one-dimensional systems with

boundary conditions. However, simulations with parameters

in the unstable regime lead to unrealistic behavior (collisions,

overlapping etc.) instead of stop-and-go waves. In this section

we discuss the reasons for this failure and formulate a model

that produces stop-and-go waves in its unstable regime.

Rewriting the generic equation of motion (7) as

ẍn =
ṽ0 − ẋn

τ
, (24)

with ṽ0 = τf + v0 � v0 implies that the movement of pedes-

trian n is determined by a driving force with a modified and

density-dependent desired speed ṽ0: the higher the density,

the smaller the desired speed. However, if the desired speed

is negative, which means pedestrians move backwards after

some delay, collisions are likely to happen. This is in fact

the case in the reciprocal-distance and exponential-distance

models, where collisions are observed in the unstable regimes

instead of jams.

FIG. 6. (Color online) Stability region of a modified SFM (Q̃ = 〈a,b,0,ãv = 0.15〉) with respect to a and b for different densities. Left:

d ′ = 2.5 . Middle: d ′ = 1.5 . Right: d ′ = 0.5 .
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FIG. 7. Standard deviation of the speeds with respect to simulation time. The initial perturbation in the speed disperses to zero when the

system is stable (left: a = 1.5, b = 1.5), while it grows when the system is unstable (right with a = 3.0, b = 1.5).

In order to avoid such problems, a nonlinear function

f (�xn,ẋn,ẋn+1) such that f (0,0,0) = −v0/τ is required. That

means that overlapping of pedestrians leads to a vanishing

desired speed ṽ0 = 0 instead of a negative one. Note that initial

high values of v0 may still lead to backward movement even

if the resulting desired speed ṽ0 = 0. We discuss this effect in

more detail in Sec. VI.

For f we propose the following expression:

f (�xn,ẋn,ẋn+1) = −
v0

τ
log(c · Rn + 1), (25)

with

Rn = rε

(
�xn

an + an+1

− 1

)

, c = e − 1. (26)

Pedestrians anticipate collisions when their distance to their

predecessors is smaller than a critical distance a = an + an+1,

which is given by the addition of safety distances of two

consecutive pedestrians. It is worth pointing out at this point

that an does not model the body of pedestrian n but represents

a “personal” safety distance. For �xn = 0, i.e., Rn = 1, the

repulsive force reaches the value −v0/τ to nullify the effects

of the driving term (Fig. 8). In other words, the desired speed

ṽ0 vanishes and pedestrians are not pushed to move backwards.

The corresponding dimensionless model we henceforth use

is

ẍ ′
n = −v′

0 ln(c · R′
n + 1) − ẋ ′

n + v′
0, (27)

FIG. 8. Absolute value of the repulsive force according to

Eq. (25).

with

R′
n = rε

(
�x ′

n

a′
n + a′

n+1

− 1

)

, v′
0 =

v0τ

a0

. (28)

The main difference between this model and the optimal veloc-

ity model [53,54] is the velocity-dependent space requirement

of pedestrians, expressed by the critical distance a.

A. Stability analysis

In this section, we investigate the stability of this model. We

suppose that �y < a′, with �y = 1
ρa0

is the mean dimension-

less spacing and a′ = 2(1 + ãvv
′), v′ being the dimensionless

speed for the equilibrium of uniform solution, and add a

small perturbation ǫn to the dimensionless coordinates of

pedestrians. For R′
n we obtain with a′ = 2(1 + ãvv

′) and

a′
v = ãv

a′

R′
n ≈ 1 −

�x ′
n

a′
(1 − a′

v(ǫ̇n + ǫ̇n+1)). (29)

From the equation of motion (27) we obtain with d0 = 1 +

c(1 −
�y

a′ )

ln(c · R′
n + 1) ≈ ln(d0) +

c

d0

(
�y

a′
a′

v(ǫ̇n + ǫ̇n+1) −
�ǫn

a′

)

.

Equation (27) in steady state yields v′
0 ln(d0) = v′

0 − v′; thus

ǫ̈n = −v′
0

c

d0

(
�y

a′
a′

v(ǫ̇n + ǫ̇n+1) −
�ǫn

a′

)

− ǫ̇n. (30)

Equation (30) rewritten in the z domain yields

z2 + (ξa′
v�y(eik + 1) + 1)z − ξ (eik − 1) = 0, (31)

with ξ =
cv′

0

a′d0
. Given ẑ± two solutions of (31) we show in Fig. 9

the influence of the velocity dependence of the safety distance

(ãv) and the constant v′
0 on the stability behavior of the model.

As expected we observe that velocity-dependent safety

distance has a stabilizing effect on the model. Unlike the

previous models for av �= 0 the model still can show significant

unstable behavior. This observation is important since it has

been shown in the context of different force-based models that

constant space requirement of pedestrians is responsible for

an unrealistic shape of the fundamental diagram in single-lane
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FIG. 9. (Color online) Left: stability region in the (ãv,k) space for v′
0 = 3 and �y = 1.5. Right: stability region in the (ṽ′

0,k) space for

ãv = 0 and �y = 1.5. The colors are mapped to the values of the real part of the positive solutions ẑ+.

movement [25,39]. Additionally, we observe that increasing

v′
0 leads to an unstable system.

Expanding Eq. (31) around k ≈ 0 yields the stability

condition

�̂ :=

(
1

1 + 2ξa′
v�y

)(
ξ

1 + 2ξa′
v�y

+ ξa′
v�y

)

− 1/2 < 0.

(32)

For ãv = 0 the equation above simplifies to

ξ < 1/2, ξ =
cv′

0

a′d0

. (33)

This result is in agreement with the stability condition V ′ <

1/(2τ ) given in Ref. [53] for the system

ẍn = A(V (�xn) − ẋ), (34)

with A = 1/τ and V (�xn) = v0(1 − ln(1 + cR)).

The dimensionless from of the equation of motion (27) has

only two free parameters, v′
0 and ãv . In Fig. 10 we observe that

the system becomes increasingly unstable with increasing v′
0

(by a relatively small and constant ãv). Assuming that the

free flow speed v0 is constant, this means that increasing

the reaction time τ or diminishing the safety space leads to

unstable behavior of the system.

FIG. 10. (Color online) Stability region in the (ãv,v
′
0) space for

�y = 1.5. The colors are mapped to the values of �̂ in Eq. (32).

B. Simulations

We perform simulations with the introduced models using

the same setup as before. For ãv = 0, v′
0 = 1, and �yn = 1.5

we calculate the solution for 3000 s. Figure 11 shows the

trajectories of 133 pedestrians. ε in Eq. (26) is set to 0.01.

As shown in Fig. 12 the speed does not become negative,

therefore backward movement is not observed. This condition

favors the appearance of stable jams.

Figure 13 shows the time evolution of the speed’s standard

deviation. After a relatively pronounced increase of the

standard deviation, a stable plateau is formed. That means

the system is in a “stable” homogeneous state.

VI. DISCUSSION AND SUMMARY

Since their first application to pedestrian dynamics by Hirai

and Tarui [55], force-based models have been used extensively

to investigate the properties of crowds. The “goodness” of

these models is usually asserted by means of qualitative and/or

quantitative investigations. Hereby, a model is judged to be

realistic if its description of pedestrian dynamics is consistent

with empirical findings. As an example, the fundamental

diagram is often used as a benchmark to test the plausibility

of such models.

FIG. 11. Trajectories by �yn = 1.5. The trajectories show stop-

and-go waves.
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FIG. 12. Speed of pedestrians at different time steps. Left: t = 300 s; right: t = 2000 s.

Depending on the expression of the repulsive force, we

classify the investigated force-based models as “algebraically

decaying” and “exponential-distance models.” The repulsive

force in the first category is inversely proportional to the

effective distance of two pedestrians [8,25,38–43]. In the

second category, however, the magnitude of the repulsive force

increases exponentially with decreasing distance [10,47–51].

Hybrid models that rely on additional mechanisms to optimize

the desired direction of pedestrians (e.g. [45]) or to handle

collisions among pedestrians like for example [44,56], where

the concept of the time-to-collision is incorporated in the

repulsive forces, make the analytic form of the repulsive force

way too complicated to be investigated analytically. Therefore,

we do not include these models in our analysis.

In this work we apply a method that gives insights into the

characteristics of force-based models for pedestrian dynamics.

It is based on an analytical approach by investigating the linear

stability of the homogeneous steady state. In this manner, it is

possible to determine for which parameter set, if any exists,

a model is able to reproduce inhomogeneous states. Yet the

nature of the unstable states (and the presence of realistic

stop-and-go waves) has to be described by simulation. From

an empirical point of view, the stop-and-go waves that were

observed in experiments under laboratory conditions [14,16]

have a short pseudoperiod. Hence it is not clear if these

waves disappear after a long time or remain. In all cases, their

FIG. 13. Standard deviation of the speed with respect to simula-

tion time. The initial perturbation in the speed stabilizes at a nonzero

value.

existence has been observed frequently in experiments under

laboratory conditions.

We have confirmed the analytical results by simulations

which also give information about the nature of the unstable

state. These simulations have clearly shown that the unstable

regions in the investigated models do not show stop-and-

go waves, but instead unrealistic behavior, e.g., backward

movement and hence overlapping of pedestrians.

We have discussed that the superposition of forces may

lead to negative “desired” speeds and hence to backward

movements. In an attempt to avoid this side effect we have

introduced a simple force-based model that shows no negative

speeds in simulations. As expected, the model is able to

produce stop-and-go waves in the instability region instead.

However, depending on the chosen values for v′
0, collisions

can occur, as a result of backwards movement and negative

speeds. This is explained by the fact that at the time t0 when

the sum of the repulsive force and the positive driving term

vanishes the system is described by the following ODE

ẍ ′
n + ẋ ′

n = 0, (35)

which yields a speed that decays exponentially:

ẋ ′
n = ẋ ′

n(t0) exp(−t). (36)

t0 can be interpreted as the time at which pedestrians start

anticipating possible collision. Larger v′
0 implies a slower

relaxation of the velocity. Therefore, a possible enhancement

of this model could be to shift the minimal distance such that at

t0, �x ′
n �= 0. That improves the ability of the system to tolerate

slower decay of speeds for t > t0. However, the main difficulty

is that the value of the critical time t0 remains unknown

and cannot be easily calculated. This would require adding

more complexity to the model, e.g., by considering behavioral

anticipation of the dynamics, adding more (physical) forces,

or implementing extra collision detection techniques.

The investigations presented here were performed for

single-file motion, i.e., a strictly one-dimensional scenario.

Although this situation is well studied empirically in several

controlled experiments, generically pedestrian dynamics is

two dimensional. It remains to be seen, both theoretically and

empirically, how the scenario found here changes in this case.
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APPENDIX

1. Derivation of stability condition for algebraic forces

Here we give the details of the derivation of the stability

criterion of Sec. III B. From (13) we find that

ẋ ′
n = v′ + ǫ̇n, �ẋ ′

n = �ǫ̇n, ẍ ′
n = ǫ̈n, (A1)

since ÿn = 0. Inserting this into the equation of motion (9) we

obtain

ǫ̈n = −F · G + v′
0 − v′ − ǫ̇n, (A2)

where F and G are defined as

F = (d ′ + �ǫn − ãv(ǫ̇n + ǫ̇n+1))−q, (A3)

G = (µ + δrε(�ǫ̇n))2, (A4)

and d ′ = �y − 2ãvv
′ − 2. We suppose that v and ρ are

such that d ′ �= 0. Considering the first-order approximation

of exp(x) for x ≪ ε we have

rε(x) ≈ ε ln
(

2 −
x

ε

)

= ε
(

ln(2) + ln
(

1 −
x

2ε

))

≈ ε ln(2) −
1

2
x . (A5)

Then,

G ≈

(

µ + δε ln(2) −
1

2
δ�ǫ̇n

)2

≈ γ 2 − δγ�ǫ̇n, (A6)

where we have introduced γ = µ + δε ln(2). Using the

effective distance Eq. (5), the expression for F can be written

as

F =
( 1

d ′

)q(

1 −
ãv(ǫ̇n + ǫ̇n+1) − �ǫn

d ′
︸ ︷︷ ︸

≪1

)−q

≈
( 1

d ′

)q(

1 + q
ãv(ǫ̇n + ǫ̇n+1) − �ǫn

d ′

)

. (A7)

Substituting the expressions for F and G in Eq. (A2) yields

ǫ̈n = −

(
1

d ′

)q(

γ 2 +
γ 2qãv

d ′
(ǫ̇n + ǫ̇n+1) −

γ 2q

d ′
�ǫn − δγ�ǫ̇n

)

+ v′
0 − v′ − ǫ̇n. (A8)

In the steady state the equation of motion (9) simplifies to

0 = −
γ 2

d ′q
+ v′

0 − v′, (A9)

and we obtain after rearranging Eq. (A8)

ǫ̈n =
δγ

d ′q
�ǫ̇n +

γ 2q

d ′q+1
�ǫn −

γ 2qãv

d ′q+1
(ǫ̇n + ǫ̇n+1) − ǫ̇n.

(A10)

Assuming a perturbation of the form ǫn(t) = αne
zt with

z ∈ C and αn ∈ R, n = 1, . . . ,N yields

αnz
2 =

δγ

d ′q
z(αn+1 − αn) +

γ 2q

d ′q+1
(αn+1 − αn)

−
γ 2qãv

d ′q+1
z(αn + αn+1) − αnz, (A11)

with αN+1 = α1. Introducing

A =
δγ

d ′q
z +

γ 2q

d ′q+1
−

γ 2qãv

d ′q+1
z and

B = z2 +
δγ

d ′q
z +

γ 2q

d ′q+1
+

γ 2qãv

d ′q+1
z + z, (A12)

Eq. (A11) takes the simple form

αn = αn+1

A

B
. (A13)

Iterating over n, we obtain the rational fraction in z

(
A

B

)N

= 1 ⇔ A = Bei2πl/N , l = 0, . . . ,N − 1. (A14)

This equation is

z2 = δγ
eik − 1

d ′q
z − φãv(eik + 1)z + φ(eik − 1) − z, (A15)

with φ =
qγ 2

d ′q+1 and k = 2πl/N with l = 0, . . . ,N − 1.

The system described by the equation of motion (9) is stable

if the real part Re[z] of all roots z of Eq. (15) is negative. Let

z+ and z− be two roots of Eq. (15). For five models (see

Table I), we investigate the stability regions in dependence

of different wave numbers k and different densities (Fig. 14).

Since z+ > z− it is enough to check the sign of z+.

We can observe that introducing a velocity dependence in

the form of relative velocity in the numerator of the repulsive

term (9) or in the space requirement (3) has a stabilizing

effect on the behavior of the model, especially for small wave

numbers k.

a. Stability for small k

Limiting the expansion to second order and taking advan-

tage of eik ≈ 1 + ik − k2

2
we obtain from Eq. (A15)

z(0)2
k2 =

δγ

d ′q

(

ik −
k2

2

)
(

z(0)k + z(1)k2
)

+ φ

(

ik −
k2

2

)

− ãvφ

(

2 + ik −
k2

2

)

(z(0)k + z(1)k2)

− (z(0)k + z(1)k2)

=

(

i
δγ

d ′q
z(0) −

φ

2
− 2ãvφz(1) − i ãvφz(0) − z(1)

)

k2

+ (iφ − 2ãvφz(0) − z(0))k. (A16)

Rearranging with respect to k yields
(

z(0)2
− i

δγ

d ′q
z(0) +

φ

2
+ 2ãvφz(1) + i ãvφz(0) + z(1)

)

k2

− (iφ − 2ãvφz(0) − z(0))k = 0. (A17)
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FIG. 14. (Color online) Stability region in the (d ′,k) space for different model classes. Top left: Q = 〈0.5,0,2,0〉. Top right: Q =

〈0.5,0,1,0〉. Bottom left: Q = 〈0.5,0,2,0.1〉. Bottom right: Q = 〈0.5,1,1,0.1〉. The colors are mapped to the value of Re[z+] such that

stability corresponds to Re[z+] < 0.

By a first-order approximation the terms with k2 in Eq. (A17)

can be ignored which leads to

iφ − 2ãvφz(0) − z(0) = 0. (A18)

Hence

z(0) = i
φ

2ãvφ + 1
. (A19)

With Re[z(0)] = 0 we notice that a first order approximation

is not enough to provide the stability criterion; therefore we

consider a second order approximation. From Eq. (A17) and

because of Eq. (A18) we obtain

z(0)2
− i

(
δγ

d ′q
− ãvφ

)

z(0) + (2ãvφ + 1)z(1) +
φ

2
= 0. (A20)

Replacing the expression of z(0) from (A19) in (A20) yields
(

i
φ

2ãvφ + 1

)2

− i

(
δγ

d ′q
− ãvφ

)(

i
φ

2ãvφ + 1

)

+ (2ãvφ + 1)z(1) +
φ

2
= 0, (A21)

or
2ãvφ + 1

φ
z(1) =

φ

(2ãvφ + 1)2

−

(
δγ

d ′q
− ãvφ

)(
1

2ãvφ + 1

)

−
1

2
, φ �= 0.

(A22)

Since the coefficient of z(1) is positive, the system described

by Eq. (A2) is linearly stable for k ≈ 0 if

γ > 0, φω2 −

(
δγ

d ′q
− ãvφ

)

ω −
1

2
< 0, (A23)

with the following notation: ω = 1
2ãvφ+1

. Remarking that
1
2
ω(2ãvφ + 1) = 1

2
, the inequality (A23) can be simplified to

γ > 0, � := φω −
δγ

d ′q
−

1

2
< 0. (A24)

Here, as a reminder, φ =
qγ 2

d ′q+1 , γ = µ + δε ln(2), and d ′ =

�y − 2ãvv − 2, with ãv = av/τ . Note that since δ,µ � 0 and

ε > 0, γ > 0 implies here µ > 0 or δ > 0.

2. Derivation of stability condition for exponential forces

As in the previous section we add a small dimensionless

perturbation ǫn to the uniform solution and get from Eq. (19)

ǫ̈n = −a exp

(
−d ′

b

)

exp

(
ãv(ǫ̇n + ǫ̇n+1) − �ǫn

b

)

− c

(

ε ln(2) −
1

2
(d ′ + �ǫ − ãv(ǫ̇n + ǫ̇n+1)

)

+ v′
0 − v′ − ǫ̇n. (A25)
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FIG. 15. (Color online) Stability region in the (d ′,k) space for different model classes. Top left: Q̃ = 〈12,1,0,0〉. Top right: Q̃ =

〈12,1,0,0.2〉. Bottom left: Q̃ = 〈12,2,0,0〉. Bottom right: Q̃ = 〈12,2,0,0.2〉. The colors are mapped to the value of Re(z̃+).

In the steady state we have ẍ(0) = 0 and Eq. (19) reduces to

0 = −a exp

(
−d ′

b

)

− c

(

ε ln(2) −
1

2
d ′

)

+ v′
0 − v′. (A26)

Applying (A26) to (A25) yields

ǫ̈n = −a exp
(−d ′

b

)

︸ ︷︷ ︸

ã

(

exp
( ãv(ǫ̇n + ǫ̇n+1) − �ǫn

b

)

− 1
)

+
1

2
c(�ǫn − ãv(ǫ̇n + ǫ̇n+1)) − ǫ̇n

≈ ã
( ãv(ǫ̇n + ǫ̇n+1) − �ǫn

b

)

+
1

2
c(�ǫn − ãv(ǫ̇n + ǫ̇n+1))

− ǫ̇n

= ãv

(

ã/b −
1

2
c

)

(ǫ̇n + ǫ̇n+1) −

(

ã/b −
1

2
c

)

�ǫn − ǫ̇n.

(A27)

By introducing the substitutions c̃ = ã/b − 1
2
c and b̃ = ãv c̃

we obtain a simplified equation for the perturbation:

ǫ̈n = b̃(ǫ̇n + ǫ̇n+1) − c̃�ǫn − ǫ̇n. (A28)

Using the expansion ǫn(t) = αne
zt , we obtain

z2 − (b̃(eik + 1) − 1)z + c̃(eik − 1) = 0. (A29)

Figure 15 shows the instability regions in the (k,d ′) space.

With ãv �= 0 the instability of the system is considerably

reduced.

a. Stability for small k

We further focus on the case k ≈ 0. For the solution z ≈

z(0)k + z(1)k2 we obtain by substituting in (A29)

z(0)2
= b̃

(

2 + ik −
k2

2

)

(z(0)k + z(1)k2)

− c̃

(

ik −
k2

2

)

− (z(0)k + z(1)k2). (A30)

Rearranging the coefficients of the same power yields

(

−z(0)2
+ 2b̃z(1) + i b̃z(0) +

c̃

2
− z(1)

)

k2

+ (2b̃z(0) − i c̃ − z(0))k = 0. (A31)

A first-order approximation yields by ignoring the k2 term in

(A31):

z(0) = i
c̃

2b̃τ − 1
. (A32)

Since Re(z(0)) = 0, we consider a second order approximation

of z. Therefore, replacing z(0) by its expression from (A32)
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yields

z(1)
(

2b̃ − 1
)

= −
c̃

2
−

(
c̃

2b̃ − 1

)2

+ b̃
c̃

2b̃ − 1
. (A33)

Finally, we obtain for z(1)

z(1) = −

(

c̃

2
+

(
c̃

2b̃ − 1

)2

− b̃
c̃

2b̃ − 1

)
(

1

2b̃ − 1

)

= −α

(
c̃

2
+ c̃2α2 − b̃c̃α

)

. (A34)

and the system is linearly stable for k ≈ 0 if

− α

(
c̃

2
+ c̃2α2 − b̃c̃α

)

< 0, (A35)

where α = 1

2b̃−1
. By simplifying using −α2c̃ > 0, we obtain

the condition

�̃ = −
1

2
+ c̃α < 0, (A36)

with α = 1

2b̃−1
, b̃ = ãv c̃, c̃ = ã/b − 1

2
c, and ã =

−a exp(−d ′/b).
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Rogsch, and A. Seyfried, Encyclopedia of Complexity and

System Science (Springer, Berlin, 2009), Vol. 5, pp. 3142–3176.

[3] A. Schadschneider, D. Chowdhury, and K. Nishinari, Stochastic

Transport in Complex Systems. From Molecules to Vehicles

(Elsevier Science Publishing Co Inc., Amsterdam, 2010).

[4] Modeling, Simulation and Visual Analysis of Crowds A Multidis-

ciplinary Perspective, edited by S. Ali, K. Nishino, D. Manocha,

and M. Shah (Springer, New York, 2013).

[5] A. Seyfried and A. Schadschneider, Fundamental diagram and

validation of crowd models, Lect. Notes Comput. Sci. 5191, 563

(2008).

[6] A. Schadschneider and A. Seyfried, Empirical results for

pedestrian dynamics and their implications for cellular automata

models, in Pedestrian Behavior: Data Collection and Appli-

cations, 1st ed., edited by H. Timmermans (Emerald Group

Publishing Limited, Bingley, UK, 2009), Chap. 2, pp. 27–43.

[7] Q. Zhang and B. Han, Simulation model of pedestrian interactive

behavior, Physica A 390, 636 (2011).

[8] W. J. Yu, R. Chen, L. Y. Dong, and S. Q. Dai, Centrifugal force

model for pedestrian dynamics, Phys. Rev. E 72, 026112 (2005).

[9] D. Helbing, Collective phenomena and states in traffic and

self-driven many-particle systems, Comput. Mater. Sci. 30, 180

(2004).

[10] T. I. Lakoba, D. J. Kaup, and N. M. Finkelstein, Modifications

of the Helbing-Molnár-Farkas-Vicsek social force model for

pedestrian evolution, Simulation 81, 339 (2005).

[11] D. R. Parisi and C. O. Dorso, Morphological and dynamical

aspects of the room evacuation process, Physica A 385, 343

(2007).

[12] A. Garcimartin, I. Zuriguel, J. M. Pastor, C. Martın Gømez, and

D. R. Parisi, Experimental evidence of the “faster is slower”

effect, Transport. Res. Proc. 2, 760 (2014).

[13] D. R. Parisi, S. A. Soria, and R. Josens, Faster-is-slower effect in

escaping ants revisited: Ants do not behave like humans, Safety

Sci. 72, 274 (2015).

[14] A. Portz and A. Seyfried, Modeling stop-and-go waves in

pedestrian dynamics, in PPAM 2009, Part II, edited by R.

Wyrzykowski, J. Dongarra, K. Karczewski, and J. Wasniewski

(Springer, Berlin, 2010), pp. 561–568.

[15] A. Seyfried, A. Portz, and A. Schadschneider, Phase coexistence

in congested sates of pedestrian dynamics, Lect. Notes Comput.

Sci. 6350, 496 (2010).

[16] S. Lemercier, A. Jelic, R. Kulpa, J. Hua, J. Fehrenbach, P.

Degond, C. Appert-Rolland, S. Donikian, and J. Pettré, Realistic
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[23] G. Köster, F. Treml, and M. Gödel, Avoiding numerical pitfalls

in social force models, Phys. Rev. E 87, 063305 (2013).

[24] M. Chraibi, A. Seyfried, and A. Schadschneider, Quantitative

validation of the generalized centrifugal force model, in Pedes-

trian and Evacuation Dynamics 2012, edited by U. Weidmann,

U. Kirsch, and M. Schreckenberg (Springer, New York, 2014),

pp. 603–613.

[25] M. Chraibi, A. Seyfried, and A. Schadschneider, The generalized

centrifugal force model for pedestrian dynamics, Phys. Rev. E

82, 046111 (2010).

[26] M. Chraibi, U. Kemloh, A. Seyfried, and A. Schadschneider,

Force-based models of pedestrian dynamics, Netw. Heterogen.

Media 6, 425 (2011).

[27] J. van den Berg, M. Lin, and D. Manocha, Recipro-

cal velocity obstacles for real-time multi-agent navigation,

in IEEE International Conference on Robotics and Au-

tomation, 2008, ICRA 2008 (IEEE, New York, 2008),

pp. 1928–1935.

[28] B. Maury and J. Venel, Handling of contacts on crowd motion

simulations, Traffic and Granular Flow ’07 (Springer, New

York, 2009).

[29] J. Venel, Integrating strategies in numerical modelling of

crowd motion, in Pedestrian and Evacuation Dynamics 2008,

edited by W. W. F. Klingsch, C. Rogsch, A. Schadschnei-

der, and M. Schreckenberg (Springer, Berlin Heidelberg,

2010).

[30] S. Patil, J. van den Berg, S. Curtis, M. Lin, and D. Manocha,

Directing Crowd Simulations Using Navigation Fields, IEEE

042809-13



MOHCINE CHRAIBI et al. PHYSICAL REVIEW E 92, 042809 (2015)

Transactions On Visualization And Computer Graphics (IEEE,

New York, 2010), Vol. 17, pp. 244–254.
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