001     256135
005     20240625095116.0
024 7 _ |a 10.1371/journal.pone.0126833
|2 doi
024 7 _ |a 2128/9346
|2 Handle
024 7 _ |a WOS:000354921400079
|2 WOS
024 7 _ |a altmetric:4035907
|2 altmetric
024 7 _ |a pmid:25992797
|2 pmid
037 _ _ |a FZJ-2015-06144
041 _ _ |a English
082 _ _ |a 500
100 1 _ |0 P:(DE-HGF)0
|a Cao, Ruyin
|b 0
245 _ _ |a Binding of the Antagonist Caffeine to the Human Adenosine Receptor hA2AR in Nearly Physiological Conditions
260 _ _ |b PLoS
|c 2015
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1449582635_18272
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
520 _ _ |a Lipid composition may significantly affect membrane proteins function, yet its impact on the protein structural determinants is not well understood. Here we present a comparative molecular dynamics (MD) study of the human adenosine receptor type 2A (hA(2A)R) in complex with caffeine--a system of high neuro-pharmacological relevance--within different membrane types. These are POPC, mixed POPC/POPE and cholesterol-rich membranes. 0.8-μs MD simulations unambiguously show that the helical folding of the amphipathic helix 8 depends on membrane contents. Most importantly, the distinct cholesterol binding into the cleft between helix 1 and 2 stabilizes a specific caffeine-binding pose against others visited during the simulation. Hence, cholesterol presence (~33%-50% in synaptic membrane in central nervous system), often neglected in X-ray determination of membrane proteins, affects the population of the ligand binding poses. We conclude that including a correct description of neuronal membranes may be very important for computer-aided design of ligands targeting hA(2A)R and possibly other GPCRs.
536 _ _ |0 G:(DE-HGF)POF3-571
|a 571 - Connectivity and Activity (POF3-571)
|c POF3-571
|f POF III
|x 0
536 _ _ |0 G:(DE-HGF)POF3-511
|a 511 - Computational Science and Mathematical Methods (POF3-511)
|c POF3-511
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-Juel1)145921
|a Rossetti, Giulia
|b 1
|e Corresponding author
|u fzj
700 1 _ |0 P:(DE-Juel1)131672
|a Bauer, Andreas
|b 2
|u fzj
700 1 _ |0 P:(DE-Juel1)145614
|a Carloni, Paolo
|b 3
|u fzj
773 _ _ |0 PERI:(DE-600)2267670-3
|a 10.1371/journal.pone.0126833
|g Vol. 10, no. 5, p. e0126833 -
|n 5
|p e0126833
|t PLoS one
|v 10
|x 1932-6203
|y 2015
856 4 _ |u https://juser.fz-juelich.de/record/256135/files/journal.pone.0126833.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/256135/files/journal.pone.0126833.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/256135/files/journal.pone.0126833.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/256135/files/journal.pone.0126833.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/256135/files/journal.pone.0126833.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/256135/files/journal.pone.0126833.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:256135
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |0 I:(DE-588b)1026307295
|6 P:(DE-HGF)0
|a German Research School for Simulation Sciences
|b 0
|k GRS Aachen
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)145921
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131672
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)145614
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-571
|1 G:(DE-HGF)POF3-570
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|v Connectivity and Activity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |0 G:(DE-HGF)POF3-511
|1 G:(DE-HGF)POF3-510
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|v Computational Science and Mathematical Methods
|x 1
|l Supercomputing & Big Data
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b PLOS ONE : 2014
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)1040
|2 StatID
|a DBCoverage
|b Zoological Record
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|k INM-2
|l Molekulare Organisation des Gehirns
|x 0
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 1
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 2
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 3
920 1 _ |0 I:(DE-Juel1)GRS-20100316
|k GRS Jülich ; German Research School for Simulation Sciences
|l GRS
|x 4
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a I:(DE-Juel1)INM-9-20140121
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)GRS-20100316
980 _ _ |a UNRESTRICTED
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)INM-9-20140121
981 _ _ |a I:(DE-Juel1)IAS-5-20120330
981 _ _ |a I:(DE-Juel1)JSC-20090406
981 _ _ |a I:(DE-Juel1)GRS-20100316


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21