001     256187
005     20220930130048.0
024 7 _ |2 doi
|a 10.5194/hess-19-4067-2015
024 7 _ |2 ISSN
|a 1027-5606
024 7 _ |2 ISSN
|a 1607-7938
024 7 _ |2 Handle
|a 2128/9347
024 7 _ |2 WOS
|a WOS:000364327800003
037 _ _ |a FZJ-2015-06171
041 _ _ |a English
082 _ _ |a 550
100 1 _ |0 P:(DE-Juel1)145658
|a Rothfuss, Y.
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Long-term and high-frequency non-destructive monitoring of water stable isotope profiles in an evaporating soil column
260 _ _ |a Katlenburg-Lindau
|b EGU
|c 2015
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1445251638_32544
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
520 _ _ |a The stable isotope compositions of soil water (δ2H and δ18O) carry important information about the prevailing soil hydrological conditions and for constraining ecosystem water budgets. However, they are highly dynamic, especially during and after precipitation events. In this study, we present an application of a method based on gas-permeable tubing and isotope-specific infrared laser absorption spectroscopy for in situ determination of soil water δ2H and δ18O. We conducted a laboratory experiment where a sand column was initially saturated, exposed to evaporation for a period of 290 days, and finally rewatered. Soil water vapor δ2H and δ18O were measured daily at each of eight available depths. Soil liquid water δ2H and δ18O were inferred from those of the vapor considering thermodynamic equilibrium between liquid and vapor phases in the soil. The experimental setup allowed for following the evolution of soil water δ2H and δ18O profiles with a daily temporal resolution. As the soil dried, we could also show for the first time the increasing influence of the isotopically depleted ambient water vapor on the isotopically enriched liquid water close to the soil surface (i.e., atmospheric invasion). Rewatering at the end of the experiment led to instantaneous resetting of the stable isotope profiles, which could be closely followed with the new method.
536 _ _ |0 G:(DE-HGF)POF3-255
|a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-Juel1)129503
|a Merz, S.
|b 1
|u fzj
700 1 _ |0 P:(DE-Juel1)129548
|a Vanderborght, J.
|b 2
|u fzj
700 1 _ |0 P:(DE-Juel1)129470
|a Hermes, Normen
|b 3
|u fzj
700 1 _ |0 P:(DE-Juel1)129555
|a Weuthen, A.
|b 4
|u fzj
700 1 _ |0 P:(DE-Juel1)129521
|a Pohlmeier, A.
|b 5
|u fzj
700 1 _ |0 P:(DE-Juel1)129549
|a Vereecken, H.
|b 6
|u fzj
700 1 _ |0 P:(DE-Juel1)142357
|a Brüggemann, N.
|b 7
|u fzj
773 _ _ |0 PERI:(DE-600)2100610-6
|a 10.5194/hess-19-4067-2015
|g Vol. 19, no. 10, p. 4067 - 4080
|n 10
|p 4067 - 4080
|t Hydrology and earth system sciences
|v 19
|x 1607-7938
|y 2015
856 4 _ |u https://juser.fz-juelich.de/record/256187/files/hess-19-4067-2015.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/256187/files/hess-19-4067-2015.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/256187/files/hess-19-4067-2015.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/256187/files/hess-19-4067-2015.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/256187/files/hess-19-4067-2015.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/256187/files/hess-19-4067-2015.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:256187
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)145658
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129503
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129548
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129470
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129555
|a Forschungszentrum Jülich GmbH
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129521
|a Forschungszentrum Jülich GmbH
|b 5
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129549
|a Forschungszentrum Jülich GmbH
|b 6
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)142357
|a Forschungszentrum Jülich GmbH
|b 7
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-255
|1 G:(DE-HGF)POF3-250
|2 G:(DE-HGF)POF3-200
|a DE-HGF
|l Terrestrische Umwelt
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b HYDROL EARTH SYST SC : 2014
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
915 _ _ |0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
|a Creative Commons Attribution CC BY 3.0
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 1 _ |a UNRESTRICTED
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21