000256204 001__ 256204
000256204 005__ 20240711085557.0
000256204 0247_ $$2doi$$a10.1007/s11666-015-0254-y
000256204 0247_ $$2ISSN$$a1059-9630
000256204 0247_ $$2ISSN$$a1544-1016
000256204 0247_ $$2WOS$$aWOS:000363038600009
000256204 037__ $$aFZJ-2015-06188
000256204 041__ $$aEnglish
000256204 082__ $$a670
000256204 1001_ $$0P:(DE-Juel1)136663$$aSchlegel, N.$$b0$$eCorresponding author$$ufzj
000256204 245__ $$aCycling Performance of a Columnar-Structured Complex Perovskite in a Temperature Gradient Test
000256204 260__ $$aBoston, Mass.$$bSpringer$$c2015
000256204 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1445253988_32548
000256204 3367_ $$2DataCite$$aOutput Types/Journal article
000256204 3367_ $$00$$2EndNote$$aJournal Article
000256204 3367_ $$2BibTeX$$aARTICLE
000256204 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000256204 3367_ $$2DRIVER$$aarticle
000256204 520__ $$aTo increase the efficiency of turbines for the power generation and the aircraft industry, advanced thermal barrier coatings (TBCs) are required. They need to be long-term stable at temperatures higher than 1200 °C. Nowadays, yttria partially stabilized zirconia (YSZ) is applied as standard TBC material. But its long-term application at temperatures higher than 1200 °C leads to detrimental phase changes and sintering effects. Therefore, new materials have to be investigated, for example, complex perovskites. They provide high melting points, high thermal expansion coefficients and thermal conductivities of approx. 2.0 W/(m K). In this work, the complex perovskite La(Al1/4Mg1/2Ta1/4)O3 (LAMT) was investigated. It was deposited by the suspension plasma spraying (SPS) process, resulting in a columnar microstructure of the coating. The coatings were tested in thermal cycling gradient tests and they show excellent results, even though some phase decomposition was found.
000256204 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000256204 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000256204 588__ $$aDataset connected to CrossRef
000256204 7001_ $$0P:(DE-Juel1)129662$$aSebold, D.$$b1$$ufzj
000256204 7001_ $$0P:(DE-Juel1)159368$$aSohn, Y. J.$$b2$$ufzj
000256204 7001_ $$0P:(DE-Juel1)129633$$aMauer, G.$$b3$$ufzj
000256204 7001_ $$0P:(DE-Juel1)129670$$aVassen, Robert$$b4
000256204 773__ $$0PERI:(DE-600)2047715-6$$a10.1007/s11666-015-0254-y$$gVol. 24, no. 7, p. 1205 - 1212$$n7$$p1205 - 1212$$tJournal of thermal spray technology$$v24$$x1544-1016$$y2015
000256204 8564_ $$uhttps://juser.fz-juelich.de/record/256204/files/art%253A10.1007%252Fs11666-015-0254-y.pdf$$yRestricted
000256204 8564_ $$uhttps://juser.fz-juelich.de/record/256204/files/art%253A10.1007%252Fs11666-015-0254-y.gif?subformat=icon$$xicon$$yRestricted
000256204 8564_ $$uhttps://juser.fz-juelich.de/record/256204/files/art%253A10.1007%252Fs11666-015-0254-y.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000256204 8564_ $$uhttps://juser.fz-juelich.de/record/256204/files/art%253A10.1007%252Fs11666-015-0254-y.jpg?subformat=icon-180$$xicon-180$$yRestricted
000256204 8564_ $$uhttps://juser.fz-juelich.de/record/256204/files/art%253A10.1007%252Fs11666-015-0254-y.jpg?subformat=icon-640$$xicon-640$$yRestricted
000256204 8564_ $$uhttps://juser.fz-juelich.de/record/256204/files/art%253A10.1007%252Fs11666-015-0254-y.pdf?subformat=pdfa$$xpdfa$$yRestricted
000256204 909CO $$ooai:juser.fz-juelich.de:256204$$pVDB
000256204 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000256204 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129662$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000256204 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159368$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000256204 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129633$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000256204 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000256204 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000256204 9141_ $$y2015
000256204 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ THERM SPRAY TECHN : 2013
000256204 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000256204 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000256204 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000256204 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000256204 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000256204 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000256204 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000256204 920__ $$lyes
000256204 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000256204 980__ $$ajournal
000256204 980__ $$aVDB
000256204 980__ $$aI:(DE-Juel1)IEK-1-20101013
000256204 980__ $$aUNRESTRICTED
000256204 981__ $$aI:(DE-Juel1)IMD-2-20101013