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Conformations, hydrodynamic interactions, and
instabilities of sedimenting semiflexible filaments†

Guglielmo Saggiorato, Jens Elgeti, Roland G. Winkler and Gerhard Gompper

The conformations and dynamics of semiflexible filaments subject to a homogeneous external

(gravitational) field, e.g., in a centrifuge, are studied numerically and analytically. The competition

between hydrodynamic drag and bending elasticity generates new shapes and dynamical features. We

show that the shape of a semiflexible filament undergoes instabilities as the external field increases. We

identify two transitions that correspond to the excitation of higher bending modes. In particular, for

strong fields the filament stabilizes in a non-planar shape, resulting in a sideways drift or in helical

trajectories. For two interacting filaments, we find the same transitions, with the important consequence

that the new non-planar shapes have an effective hydrodynamic repulsion, in contrast to the planar

shapes which attract themselves even when their osculating planes are rotated with respect to each

other. For the case of planar filaments, we show analytically and numerically that the relative velocity is

not necessarily due to a different drag of the individual filaments, but to the hydrodynamic interactions

induced by their shape asymmetry.

1. Introduction

Semiflexible filaments are fundamental constituents of micro-

biological systems, where microtubules and actin filaments

serve as scaffolds for cellular structures and as routes to sustain

and guide cellular transport systems.1 Microtubules are also the

main structural elements of cilia and sperm flagella, where

their relative displacement and deformation due to motor

proteins gives rise to the flagellar beat and hydrodynamic

propulsion.2,3 Microtubules and flagella can be seen as elastic

filaments interacting with their own flow field. The ability to

visualize, assemble, and manipulate biological and artificial

semiflexible polymers4–7 poses new fundamental questions on

the dynamics of filaments when elastic and hydrodynamic forces

compete.

The dragging of stiff rods through a viscous fluid has been

studied in detail.8 A single rod does not reorient, but falls with

its initial orientation. A more complex dynamical behavior can

be expected and is indeed observed for semiflexible filaments

when the curvature or stretching elasticity competes with

the hydrodynamic interactions.9–11 Single dragged semiflexible

filaments bend into a shallow V-shape to balance the higher

drag at both ends12 and their end-to-end vector aligns perpen-

dicularly to the external field.11 For strong drag, higher modes

have been found to be excited; this generates W-shapes initi-

ally, which then relax back into horseshoe-like U-shape.12 Here,

the dynamics seems to be constrained to the plane initially

defined by the direction of the external field and the filament

itself. However, these investigations address the problem from

a deterministic point of view, and little attention has been paid

to the dynamic stability of the resulting shapes. In all cases, the

dragged and deformed semiflexible filament initially defines

the settling plane, but the stability of the filament’s planar

shape has not been investigated as function of the external field

or the relative position of possible neighboring filaments.

Here, we focus on the full three-dimensional shape of one,

two, and three semiflexible filaments sedimenting in a homo-

geneous external field. We incorporate the hydrodynamics into

the equations of motion for the filament shape via the Oseen

tensor, valid in the limit of zero Reynolds number. As a result

of our numerical and analytical analysis, we find that the

deformations confined to a plane become unstable with respect

to normal perturbations at a threshold value B1* of the strength

B of the external field, which is smaller than the threshold B2*

where initial, transient W-shapes become excited, see Fig. 1.

Thus, with increasing strength of the external field, two instabili-

ties and transitions to new sedimentation modes are predicted.

The first transition is from a stable planar U-shape with little

bending to a stationary horseshoe-like U-shape with out-of-plane

bending. The second transition at stronger fields excites a
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metastable W-shape, also with out-of-plane bending, which then

‘‘relaxes’’ into a non-stationary asymmetric U-shape. As result,

there exist two families of shapes, where the elastic forces are

balanced by a conformation-dependent drag.

We consider next the interaction between two filaments in an

external field. Indeed, while the dynamics of an isolated filament

is an indispensable knowledge needed to understand the case of

n 4 1 interacting filaments, many situations are characterized

by elastic slender objects interacting via the generated flow field:

cilia,7,13 sperm,14,15 and E. coli bundles16,17 are probably the

most relevant from a biological point of view.

It is known that the sedimentation behavior of colloids can

be quite complex. The interaction of sedimenting particles has

been studied in considerable detail for spherical colloids.18,19

Two particles sediment together, but don’t follow the direction

of the external field, and move instead under an angle with

respect to it. For more particles, many different dynamical

behaviors can be found, in particular periodic motions where

particles ‘‘dance’’ around each other.19

For dragged semiflexible filaments, the dynamical behavior is

even more complex.10 In particular, we show that two filaments

(Fig. 1) attract each other, repel each other, or spin around the

field depending on the intensity of the external field.

We focus here on the stability of the sedimentation plane for

different field intensities and on the origin of the relative

velocity. In particular, we want to see whether the velocity

difference is due to different shapes or to the broken up-down

symmetry. For even more filaments, the dynamics becomes

unsteady at much weaker external field strength than expected

from the two-filaments case.

2. Model and methods
2.1 Discrete model

In the simulation, filaments of length L = b(N � 1) are

represented by Nmass points of mass m connected by harmonic

bonds of length b, with the potential

Ub ¼ kb

2

X

N�1

i¼0

Rij j � bð Þ2; (1)

where Ri = ri+1 � ri is the vector connecting the consecutive

points, i A {0,. . .,N}, and kb is the force constant. To account for

filament stiffness, we introduce the bending potential

U ¼ k

2b3

X

N�2

i¼0

Riþ1 � Rið Þ2; (2)

with the bending rigidity k.20 In addition, the mass points are

exposed to an external gravitational field with the force on a

particle

FGi = �mgez, (3)

with the unit vector ez along the z axis of the Cartesian

coordinate system (cf. Fig. 1).

Inter- and intrafilament hydrodynamic interactions sub-

stantially influence the filament dynamics. Hence, we apply

the equation of motion

g0(
:
ri � ui) = FCi (4)

for the overdamped dynamics,21 where, ui is the background

flow velocity at the position ri of the particle, g0 = 3pZb is its

Fig. 1 Snapshots from simulations of single filaments dragged by the external homogeneous field B = mgL2/k, where L is the filament length, g the

external field, and k the bending stiffness. Left: For weak field (B o B1*) the filament bends into a V-shape (in dots), dominated by the w2,z mode. Center:

As the field strength increases, higher modes with an out-of-plane component are excited, and the filament drifts sideways. Right: For even stronger

fields (B4 B2*) further symmetries are spontaneously broken, and the filament rotates following a helical trajectory. Corresponding movie is shown in the

ESI.† The vertical distance between the frames is reduced to enhance the visualization of the filament conformations.
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friction coefficient for a fluid of viscosity Z, and FCi is the sum

of all conservative forces.10 We compute the background

flow velocity explicitly via the Oseen tensor.21 Thus, the final

equations of motion are

_ri ¼
X

N

j¼0

HijF
C
j ; (5)

with the hydrodynamic tensor

Hij ¼ H ri � rj

� �

¼ 1� dij
� � 3b

8g0rij
Iþ r̂ij r̂

T

ij

h i

� �

þ 1

g0
I

(6)

and rij = ri � rj, rij = |rij|, and r̂ij = rij/rij.

If needed, excluded-volume interactions are implemented

via a short-range Yukawa potential between points of different

filaments, which implies a minimal effective distance during

the simulations. A low-amplitude white noise is added to avoid

metastable states. The noise is not considered to be of thermal

origin as it is chosen to be negligible compared to the other

hydrodynamic and mechanical forces and barely influences the

stationary settling dynamics for the considered external fields.

2.2 Parameters/methods

We set the hydrodynamic diameter of a point equal to the bond

length, as in the Shish-Kabab model of ref. 10, 12 and 21,

thereby fixing the aspect ratio to b/L. Lengths are measured in

units of the hydrodynamic diameter b and time in units of g0b
3/k.

This choice eliminates the friction coefficient and the bending

rigidity from the equations of motion. The force constant for the

bonds is set to kbb
3/k = 1, resulting in a maximum extension of

�0.6% of the length over the investigated range of parameters. In

these units, the external field strength mg becomes G = mgb2/k.

For convenience and an easier comparison with results of ref. 10,

we characterize the external force by B = N2G, or B = mgL2/k.

For B { 1, the bending rigidity dominates and the filament

is essentially straight. We consider only filaments of length

L = 30b in the following. For excluded volume interactions, the

minimal effective distance is approximately 5b. The equations

of motion are integrated with an adaptive time-stepping

Velocity-Verlet algorithm.22,23

2.3 Continuum model

For an analytical description of the filament dynamics, we adopt a

continuum model. The equation of motion of the point rn(s,t)

(�L/2 r s r L/2) along the contour of filament n is given by24

@tr
nðs; tÞ ¼

X

m

ðL=2

�L=2

ds0H r
nðsÞ � rmðs0Þð Þfmðs0Þ; (7)

where fm is the external force density and the index m indicates the

various filaments. As before, the hydrodynamic tensor H(rn(s) �
rm(s0)) comprises the Oseen tensor and the local friction. Explicitly,

it reads as

HðRÞ ¼ 1

8pZ

YðjRj � bÞ
jRj3 IR

2 þ RR
T

� �

þ dðRÞ
g

I: (8)

Here,Y(x) is the Heaviside function, g = 3pZ is the friction per unit

length, and R = rn(s) � rm(s0).24,25 The force density f comprises

bond, bending, and gravitational forces. In the limit of a rather

stiff filament, it can be written as

f
nðsÞ ¼ lpkBT

1

lp2
@2

@s2
� @4

@s4

� 	

r
nðsÞ þ f

n

GðsÞ; (9)

with the persistence length lp.
26,27 In the following, we will neglect

the bond term, i.e., the term with the second derivative and focus

on bending stiffness only.

The expansion

r
nðs; tÞ ¼

X

1

n¼0

vnnðtÞfnðsÞ (10)

in terms of the eigenfunctions fn of the biharmonic operator, i.e.,

lpkBT
@4

@s4
fnðsÞ ¼

g

tn
fn (11)

with suitable boundary conditions,26,27 leads to the equations of

motion of the mode amplitudes

@tv
n

n ¼
X

m

X

1

l¼0

H
nm
nl � g

tl
v
m
l ðtÞ þ f

m
lG

� �

: (12)

The matrix representation of the hydrodynamic tensor is

H
nm
nl ¼

ðL=2

�L=2

dsds0fnðsÞH r
nðsÞ; rmðs0Þð Þflðs0Þ: (13)

The eigenfunctions fn(s) and relaxation times tn are well

known.5,24,27 For convenience, we summarize them in Appendix

A. However, eqn (12) is nonlinear and thus cannot straight-

forwardly be solved. For the current analysis, the second and

forth mode are most important; they are responsible for the

V- and W-shape displayed in Fig. 1.

To characterize the numerically obtained filament con-

formations, we calculate the mode amplitudes

vnnðtÞ ¼
ðL=2

�L=2

ds rnðs; tÞfnðsÞ: (14)

The components of the vector vnn indicate the importance of the

mode in the Cartesian directions. For example, the mode

amplitude wn2,z measures how much the filament bends along

the z direction into a V-like shape.

As for the discrete model, we scale lengths by the filament

diameter b and time by g0b
3/kBTlp. The latter is identical to the

time scaling of the discrete model, since k = kBTlp. This implies

for the strength of the external force G = rgb3/kBTlp = mgb2/k.

3. Results
3.1 Deformation and dynamics of single filament

The filament is initially oriented along the x axis of the

reference frame. After a certain time, the dragged filament

reaches a stationary shape and velocity. Examples of conforma-

tional sequences for various field strengths are displayed in

Fig. 1. We characterize the shapes via eqn (14) in terms of the
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mode amplitudes. In Fig. 2, the most important stationary

amplitudes are presented. Below a critical field B1* C 1200,

the filament shape is governed by planar modes (green and

black lines), where w2,z dominates and, thus, the characteristic

V-shape appears.

In simulations restricted to a two-dimensional plane, or in

three-dimensional simulations without noise,12 the filament

dynamics is localized in the xz plane and filaments bend into a

planar W-shape for fields B 4 B2* E 1800. In contrast, in our

three-dimensional simulations with weak noise, we find that the

planer filament conformations are metastable for B1* o Bo B2*,

and also modes along the y axis are excited. We characterize the

out-of-plane filament shape and dynamics by the mode amplitude

w2,>(t), where

w2,>(t) = w2,x(t) + iw2,y(t) = |w2,>|e
iot. (15)

In the stationary state, an U-shaped and deck-chair-like con-

formation is assumed with out-of-plane bending (see Fig. 1).

The filament orientation is fixed and w2,> = w2,y (blue line in

Fig. 2). Since its shape is asymmetric, the filament drifts side-

ways while settling in the external field.

When B \ B2*, the mode w4,z becomes important at early

times, leading to a temporary W-shape (Fig. 1). The trajectory

for B C 3000, displayed in Fig. 1, shows the initial W, which

later turns into an asymmetric U-shape, in which one arm is

longer than the other. The appearing shape is stable; however,

because of its asymmetry, the mode amplitude w1,z is non-zero

and the filament rotates around the z axis with frequency o, see

Fig. 2 (orange line), which we determined via eqn (15). In Fig. 3,

we characterize the helical trajectories by the pitch, radius, and

rotation frequency (B 4 B2*). As the field increases the rotation

frequency increases, and the helix becomes more tight because

the radius decreases and the pitch shortens. The ratio between

the pitch and the radius defines the helix angle a E 4p/9,

constant for all B4 B2*. Approaching the transition point from

above, the rotation frequency vanishes, and both radius and

pitch diverge because the trajectory straightens.

In contrast, in the deterministic dynamics of previous

studies,12 the W-shape was found to decay only into the stable

and symmetric planar horseshoe shape.

3.2 Conformations and dynamics of two interacting filaments

3.2.1 Weak field – relative velocity. As shown in Section 3.1,

the stationary shape of a single filament in weak fields B o B1*

is of V-shape, which breaks the bottom-top symmetry. This is

sufficient to generate an effective attraction between

sedimenting filaments with the same shape. To characterize

this interaction, we compute the relative velocity Dv between

the centers of mass of two filaments of equal shape along the

sedimentation direction. The filaments remain localized in the

xz plane and are separated by a distance d. As shown in Fig. 4,

the relative velocities exhibit a significant dependence on

the filament separation. We especially find that Dv B d�2 for

Fig. 2 Stationary mode amplitudes of a single semiflexible filament as

function of the external field B. The shaded areas indicate the 66%

confidence interval. When B o B1*, only planar modes are excited, and

the filament stays in the plane defined by its initial orientation and the

orientation of the applied field, here the xz plane. For B 4 B1*, an out-of-

plane mode w2,> is excited. For B 4 B2*, the out-of-plane component

w2,>, the bending component w2,z saturates, and the amplitude w4,z

becomes important (visualized in Fig. 1). In black crosses indicate the

maximum value of w4,z before it decays. The resulting shape is asymmetric

and spirals around the z axis with frequency |o|/o2 (orange line), with o2

the frequency of the second mode (eqn (15)).

Fig. 3 Pitch, radius, and rotation frequency of the helical trajectories

when B 4 B2*. The radius and pitch seem to diverge in the proximity of

the transition. Bars are standard deviations.

Fig. 4 Simulations of two filaments with the same imposed shape, kept

constant during the simulation (B = 195). The shapes are created with the

given w2,z. The filaments lie in the same plane, parallel to the external field. The

relative velocity Dv scales as d�2. The black lines correspond to the prediction

of eqn (17), save for a common factor d E 11. The theory describes correctly

the trend on d, and the trend on w2,z holds up to w2,z = 8 � 10�3.
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distances larger than the filament length. The distance dependence

can be understood by the theoretical model introduced in Section

2.3. For the considered filament shapes,

r1(s,t) = (w1,x(t)f1(s), 0, w2,zf2(s))
T (16)

and r2(s,t) = r1(s,t) + dez, the general expression for the velocity

difference derived in Appendix B yields

Dvcm � w2;z
2L

2

d2
(17)

in the limit d-N. Evidently, the filaments attract each other

due to the top-bottom asymmetry of their shapes. In the

simulations, the filament shapes are determined initially by

imposing the amplitude w2,z, which is then kept fixed. The

simulation results of Fig. 4 are in agreement with our theo-

retical prediction down to roughly the filament length. The d�2

power law is indeed a universal scaling, unaffected by the

filaments shape and external field as evident from the theore-

tical considerations in Appendix B. The dependence of Dv on

w2,z (eqn (17)) is also verified for very small bending.

3.2.2 Weak field – stability. We now relax the imposed

shape constraint and consider collective effects for two filaments,

which are initially straight, oriented along the x axis, and

displaced along the z axis by a distance d (cf. Fig. 5(a)). For

easier comparison with ref. 10 and 12, we employ the

dimensionless number D = (Aupper � Alower)/(L/2) to quantify the

bending asymmetry, where Aupper,lower is the total z extension of

the upper/lower filament. As indicated in Fig. 6, the filament

curvature changes with time and the upper filament is bent

stronger than the lower one. Fig. 6(a) and (b), show the

curvature asymmetries D and the relative velocities for various

external field strengths. D decreases with increasing distance d,

indicating more similar shapes at larger distances. Hydrodynamic

interactions lead to an attraction of the two filaments (vupper 4

vlower), in agreement with the imposed-shape approximation

studies of the last section. Indeed, the constant-shape approxi-

mation still gives the correct (L/d)2 power-law dependence for d/L

c 1, while the magnitude of the deformation, w(eff)2,z , has to be

fitted. When the filaments approach each other, the generated

flow field depends on the details of their shapes that, in turn,

depends on the external field, hence we expect a non-universal

behavior. Note that in contrast to ref. 10, we find that the upper

filament bends more than the lower filament (see also Fig. 5).

The planar configuration of a filament is also stable with

respect to filament rotations around the field axis, see Fig. 5(b).

Filaments that are initially displaced along the z axis (as in the

previous case) and rotated with relative orientation angle y around

the external field axis spin until the relative angle vanishes, as

illustrated by Fig. 6(c). Also in this case, the upper filament drifts

and rotates faster than the lower one, see Fig. 6(d). The relative

velocity is essentially the same as in the planar case.

Thus, two filaments sedimenting in weak fields relax toward

a stable planar configuration one behind the other. The shape

of the filaments is dominated by the second mode, pointing

downwards, as shown in Fig. 5. This mode dominates and it

breaks the mirror symmetry of the hydrodynamic interactions

even for filaments of the same shape. Note that, in contrast to

the single filament case, the system does not reach a stationary

state velocity or shape, since the upper filament is always faster

than the lower filament until the filaments touch each other.

3.2.3 Strong field. For strong fields, we consider two fila-

ments, which are initially displaced by 6L along the field direction.

We measure the shape eigenvalues when the distance is 5L, in the

quasi-stationary regime, and find that the eigenvalues exhibit the

same behavior as those of a single filament. This means that for

B 4 B1* the dynamics of each filament is dominated by the local

flow field and not by the interactions with the other filament.

Indeed, we find no correlations between the orientations of the

out-of-plane components of the two filaments for B 4 B1*: the two

filaments can by chance bend out-of-plane and drift in arbitrary

directions.

When B 4 B2*, the filaments undergo the same transitions

as a single filament: each of them reaches the same stationary

shape and rotation velocity as an isolated filament. We find

no correlations between the rotation directions of the two

filaments: some filaments spin in the same direction, others in

Fig. 5 Snapshots of two-filament conformations for B = 195, in time

intervals Dt. (a) Co-planar sedimentation. Note that the upper filament is

more bent than the lower filament, and dmin/L = 0.13. Axes to scale,

z position translated. (b) The two filaments approach each other after

initialization in a rotated configuration. Both filaments spin around the

z axis, with the upper filament spinning faster (see Fig. 6(c and d)).
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opposite directions, with no preference. This highlights the relevance

of hydrodynamic interactions between two filaments for external

fields weaker than B1*. At stronger fields, the non-planar configura-

tions generate forces that compete with and dominate over hydro-

dynamic interactions among the filaments and the emergent

behavior is, essentially, the same as that of an isolated filament.

3.3 Three filaments

Given the complex dynamics of two interacting filaments, it is

interesting to consider also the collective behavior of several

filaments. We find in simulations of systems with more than

two filaments an intriguing collective dynamic behavior even

for very weak fields (B C 60) and in the absence of noise.

We focus here on the case of three filaments, see Fig. 7. For

most (randomly chosen) initial configurations, the nearest two

filaments form a bundle that settles faster than the third

filament that is then left behind. However, we find also some

initial configurations where all three filaments attract each

other and form a bundle. In this case, the relative positions

are not stationary; instead, the filaments follow a periodic

trajectory, see Fig. 7 (inset). In the inset of Fig. 7, we show also

that the shapes of the three filaments are not stationary. The

mode amplitude w2,z of each filament changes periodically, with

a constant phase shift between them.

Our results for one and two filaments indicate that triggering

of a time-periodic bifurcation requires strong fields. However, the

three-filaments results suggest that systems with more filaments

display a very complex dynamics even for weak fields due to

complex hydrodynamic interactions.

4. Discussion and conclusions

We have investigated the dynamics and stability of semiflexible

filaments exposed to an external homogeneous field and inter-

acting only via hydrodynamic fluid fields. Due to the competition

between hydrodynamic interactions and bending stiffness,

the appearing dynamical behavior is richer than for entropy-

dominated polymers or interacting rods.

We have shown that, for weak fields B o B1*, co-planar

configurations of two filaments are stable upon perturbations

that rotate the shapes relative to each other around the field

Fig. 6 (a and b) Bending asymmetry D and relative velocity Dv of two filaments as function of the filaments distance for L/b = 30. The two filaments are in

the same plane, parallel to the external field and parallel to each other. Each color corresponds to a different external field B, as indicated. The velocity v0
is the terminal velocity given by the resistive force theory for a rod. When d/L c 1, the relative velocity scales as d�2. Note that filaments attract, i.e. time

progresses from right to left. (c and d) Rotation angle y and relative velocity Dv of two initially rotated filaments around the field axis by y = 181. The

relative velocity is essentially unaffected by this change. Notably, the filaments spin toward each other decreasing the relative angle.

Fig. 7 Three semiflexible filaments and trajectory of one bead (thick line), for

the external field BC 60{ B1*. In this case, the filaments form a bundle, but

the relative positions change periodically. Inset: Plot of w2,z for the three

filaments. Since they have the same period and constant phase shift, this is the

result of a cooperative behavior. Corresponding movie is shown in the ESI.†
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axis. With simulations of fixed shape filaments, we have high-

lighted that a V- or U-shape is sufficient to break the hydro-

dynamic symmetry at low Reynolds numbers, leading to a

relative velocity that scales with distance as (L/d)2. Hence, the

difference in drag coefficients between filaments is not neces-

sary to explain the faster settling velocity of the upper filament.

For external field strengths exceeding the critical value B1*, the

hydrodynamic interactions bend the filament out of its principal

plane. Simulations of a single bent filament show that the hydro-

dynamic forces balance the elastic force, stabilizing the out-of-

plane shape. The resulting trajectory shows a drift in the direction

of out-of-plane bending, superimposed to the settlingmotion. This

is a novel result, not to be confused with the previously reported

metastable W-state12 that is excited when B 4 B2*. A careful

analysis of the eigenmodes indicates that the decay of the meta-

stable state does not, in general, lead to the reported planar

horseshoe shape, but also excites an average rotation mode with

respect to the field axis (w1,z) and our out-of-plane bending mode

w2,>. The filaments spin then around the field axis.

Finally, we have demonstrated that three filaments display

an unexpected periodic dynamics even at field strengths far

weaker than B1*. This is in contrast to the dynamics of a pair of

filaments that either displays a monotonic dynamics that

relaxes the attractive force (when B is weak) or a dynamics

dominated by the single-filament (when B 4 B1*).

The interesting external fields B are in the range 101 t B t

104. We can estimate these parameters for biopolymers like actin

or microtubules. Actin has a persistence length of lp C 17 mm, an

average length L C 20 mm, and the bending rigidity k C 60 �
10�3 pN mm2.1 The external gravitational field, corrected for

buoyancy, is about G E 10�7 pN mm�1, which implies Bgravity C

10�2. Microtubules, on the other hand, are stiffer, longer, and

heavier with lp B 1 mm, L B 100 mm { lp and G E 10�6

pN mm�1.28 This yields the effective field strength Bgravity C 10�1.

An experimental test of our predictions is therefore within reach

of modern centrifuges with accelerations of about 103g.

A Eigenfunctions of a semiflexible
filament

The eigenvalue eqn (11) with the boundary conditions

@2

@s2
fnðsÞ













s¼�L=2

¼ @3

@s3
fnðsÞ













s¼�L=2

¼ 0 (18)

yields the eigenfunctions

fnðsÞ ¼
1
ffiffiffiffi

L
p sinh zns

sinh znL=2
þ sin zns

sin znL=2

� 	

; n4 1; odd; (19)

fnðsÞ ¼
1
ffiffiffiffi

L
p cosh zns

cosh znL=2
þ cos zns

cos znL=2

� 	

; n4 1; even: (20)

The wave numbers are approximately given by zn = (2n� 1)p/2L

(n 4 1), and the corresponding relaxation times by

tn ¼
16gL4

lpp4kBTð2n� 1Þ4: (21)

More precise eigenfunctions are provided in ref. 24 and 27. The

set of functions is complemented by the eigenfunction of the

center-of-mass translation27

f0 ¼
1
ffiffiffiffi

L
p (22)

and that of rotation of the rodlike object

f1 ¼
ffiffiffiffiffiffi

12

L3

r

s; (23)

with the relaxation time

t1 ¼
gL3

24kBT
: (24)

B Relative velocity of two filaments

We derive here an equation for the relative velocity between the

centers of mass of two filaments. We restrict our analysis to the

case of small bending amplitudes, that is equivalent to consider

small external fields, and filaments of identical shape.

Since
Ð L=2
�L=2fnðsÞds ¼

ffiffiffiffi

L
p

dn;0 for the exact eigenfunctions, the

difference in the center-of-mass velocity Dvcm = vcm
1 � vcm

2 of two

isolated filaments is given by

Dvcm ¼ 1

L

ðL=2

�L=2

ds@t r
1ðs; tÞ � r

2ðs; tÞ
� �

¼ 1
ffiffiffiffi

L
p @t w0

1ðtÞ � w0
2ðtÞ

� �

:

(25)

Substitution of eqn (12) yields

ffiffiffiffi

L
p

Dvcm ¼
X

n

H
11
0n � g

tn
wn

1 þ fnG
1

� �

�
X

n

H
22
0n � g

tn
wn

2 þ fnG
2

� �

þ
X

n

H
12
0n � g

tn
wn

2 þ fnG
2

� �

�
X

n

H
21
0n � g

tn
wn

1 þ fnG
1

� �

:

The first two terms on the right-hand side account for self-

interactions of the individual filaments, the other two terms for

the hydrodynamic interactions between the filaments.

We simplify our considerations by assuming identical

shapes of the filaments, i.e., we set vn
1 = vn

2: = vn. Moreover,

for the constant external force the relation applies fnnG = fn0Gd0n
independent of the particular filament. Hence, its contribution

vanishes, which yields

Dvcm ¼ 1
ffiffiffiffi

L
p

X

1

n¼1

H
21
0n �H

12
0n

� � g

tn
wn: (26)

We are primarily interested in the distance dependence of the

relative center-of-mass velocity. Hence, we additionally neglect

the dyadic term in the hydrodynamic tensor (8). Moreover, the

local friction term vanishes in eqn (26), and the hydrodynamic

tensor can be written as

H
nm
0n ¼ 1

8pZ

ðL=2

�L=2

fnðsÞf0ðs0Þ
jrnðsÞ � rmðs0Þjdsds

0: (27)
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Using the eigenfunction expansion eqn (10), we obtain

r
nðsÞ � r

mðs0Þ ¼ Drnmcm þ
X

1

n¼1

wn fnðsÞ � fnðs0Þð Þ

¼ Drnmcm þ Nðs; s0Þ:

(28)

With this definition, we obtain for DH12
0n = H21

0n � H12
0n

DH12
0n ¼ 1

8pZ

ðL=2

�L=2

dsds0fnðsÞf0ðs0Þ

� 1

Dr21cm � Nðs; s0Þ












� 1

Dr21cm þ Nðs; s0Þ












" #

:

(29)

In the limit d = |Dr21cm| c |N(s; s0)|, Taylor expansion yields

DH12
0n ¼

1

4pZ

ðL=2

�L=2

dsds0fnðsÞ
Nðs; s0Þ � Dr21cm

d3
f0ðs0Þ; (30)

and hence,

Dvcm ¼ 1

4pZ
ffiffiffiffi

L
p 1

d2

X

1

n¼1

g

tn
wn

ðL=2

�L=2

dsds0fnðsÞ
Nðs; s0Þ � Dr21cm

d
f0ðs0Þ:

(31)

Substituting x = s/L and setting g = 3pZ24 yields

Dvcm ¼ 3

4

L2

d2

X

1

n¼1

1

tn

wn
ffiffiffiffi

L
p

ð1=2

�1=2

dxdx0fnðxÞ
Nðx; x0Þ � Dr21cm

d
f0ðx0Þ:

(32)

Thus, the relative velocity decreases quadratically with the

distance between the filaments. There is evidently no velocity

difference when Dr21cm is perpendicular to N(s,s0). In particular,

there is no force between two specifically aligned rods as long

as their director w1 is perpendicular to Dr21cm.
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