000256220 001__ 256220
000256220 005__ 20240610121230.0
000256220 0247_ $$2doi$$a10.1039/C5SM01683E
000256220 0247_ $$2ISSN$$a1744-683X
000256220 0247_ $$2ISSN$$a1744-6848
000256220 0247_ $$2WOS$$aWOS:000360656900014
000256220 0247_ $$2altmetric$$aaltmetric:4371231
000256220 0247_ $$2pmid$$apmid:26256415
000256220 0247_ $$2Handle$$a2128/22831
000256220 037__ $$aFZJ-2015-06196
000256220 041__ $$aEnglish
000256220 082__ $$a530
000256220 1001_ $$0P:(DE-Juel1)165990$$aIsele-Holder, Rolf$$b0$$ufzj
000256220 245__ $$aSelf-propelled worm-like filaments: spontaneous spiral formation, structure, and dynamicsI
000256220 260__ $$aLondon$$bRoyal Soc. of Chemistry$$c2015
000256220 3367_ $$2DRIVER$$aarticle
000256220 3367_ $$2DataCite$$aOutput Types/Journal article
000256220 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1445344550_32227
000256220 3367_ $$2BibTeX$$aARTICLE
000256220 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000256220 3367_ $$00$$2EndNote$$aJournal Article
000256220 520__ $$aWorm-like filaments that are propelled homogeneously along their tangent vector are studied by Brownian dynamics simulations. Systems in two dimensions are investigated, corresponding to filaments adsorbed to interfaces or surfaces. A large parameter space covering weak and strong propulsion, as well as flexible and stiff filaments is explored. For strongly propelled and flexible filaments, the free-swimming filaments spontaneously form stable spirals. The propulsion force has a strong impact on dynamic properties, such as the rotational and translational mean square displacement and the rate of conformational sampling. In particular, when the active self-propulsion dominates thermal diffusion, but is too weak for spiral formation, the rotational diffusion coefficient has an activity-induced contribution given by vc/ξP, where vc is the contour velocity and ξP the persistence length. In contrast, structural properties are hardly affected by the activity of the system, as long as no spirals form. The model mimics common features of biological systems, such as microtubules and actin filaments on motility assays or slender bacteria, and artificially designed microswimmers.
000256220 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000256220 588__ $$aDataset connected to CrossRef
000256220 7001_ $$0P:(DE-Juel1)130629$$aElgeti, Jens$$b1$$ufzj
000256220 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b2$$ufzj
000256220 773__ $$0PERI:(DE-600)2191476-X$$a10.1039/C5SM01683E$$gVol. 11, no. 36, p. 7181 - 7190$$n36$$p7181 - 7190$$tSoft matter$$v11$$x1744-6848$$y2015
000256220 8564_ $$uhttps://juser.fz-juelich.de/record/256220/files/c5sm01683e.pdf$$yOpenAccess
000256220 8564_ $$uhttps://juser.fz-juelich.de/record/256220/files/c5sm01683e.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000256220 909CO $$ooai:juser.fz-juelich.de:256220$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000256220 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165990$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000256220 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130629$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000256220 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000256220 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000256220 9141_ $$y2015
000256220 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000256220 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000256220 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000256220 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOFT MATTER : 2014
000256220 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000256220 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000256220 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000256220 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000256220 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000256220 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000256220 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000256220 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000256220 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000256220 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$kIAS-2$$lTheorie der Weichen Materie und Biophysik $$x0
000256220 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik $$x1
000256220 9801_ $$aFullTexts
000256220 980__ $$ajournal
000256220 980__ $$aVDB
000256220 980__ $$aUNRESTRICTED
000256220 980__ $$aI:(DE-Juel1)IAS-2-20090406
000256220 980__ $$aI:(DE-Juel1)ICS-2-20110106
000256220 981__ $$aI:(DE-Juel1)IBI-5-20200312
000256220 981__ $$aI:(DE-Juel1)IAS-2-20090406
000256220 981__ $$aI:(DE-Juel1)ICS-2-20110106