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Self-propelled worm-like filaments: spontaneous
spiral formation, structure, and dynamicsf

Rolf E. Isele-Holder, Jens Elgeti and Gerhard Gompper

Worme-like filaments that are propelled homogeneously along their tangent vector are studied by
Brownian dynamics simulations. Systems in two dimensions are investigated, corresponding to filaments
adsorbed to interfaces or surfaces. A large parameter space covering weak and strong propulsion,
as well as flexible and stiff filaments is explored. For strongly propelled and flexible filaments, the free-
swimming filaments spontaneously form stable spirals. The propulsion force has a strong impact on
dynamic properties, such as the rotational and translational mean square displacement and the rate of
conformational sampling. In particular, when the active self-propulsion dominates thermal diffusion, but
is too weak for spiral formation, the rotational diffusion coefficient has an activity-induced contribution
given by v./&p, where v, is the contour velocity and & the persistence length. In contrast, structural
properties are hardly affected by the activity of the system, as long as no spirals form. The model
mimics common features of biological systems, such as microtubules and actin filaments on motility
assays or slender bacteria, and artificially designed microswimmers.

1 Introduction

Its importance in biology and its enormous potential impact in
technical applications makes active soft matter a field of rapidly
growing interest and progress.'™ Flexible slender bodies are
of particular importance. The majority of natural swimmers
propel themselves using flexible, hair-like structures like cilia
and flagella." Another important example are actin filaments
and microtubules, major constituents of the cytoskeleton,
whose capability to buckle decisively controls the mechanical
properties of the cell body.* Flexibility is the crucial ingredient
for the formation of small-scale spirals® and possibly also for
large-scale swirls® of microtubules on motility assays. Even
the structure of slender bacteria can be dominated by their
flexibility.” Electrohydrodynamic convection can propel colloid
chains because they are flexible,? just as the swimming mecha-
nism of assembled magnetic beads in an oscillating external
magnetic field is possible because of the swimmer’s flexibility.’
Flexibility is of course also the feature that allows for the
instabilities leading to cilia-like beating in artificially bundled
microtubules."*"*

Despite its importance, the number of theoretical studies of
active agents that incorporate flexibility is still relatively small,
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and can roughly be subdivided into works that focus on
buckling phenomena and on free-swimming agents. Symmetry
breaking instabilities leading to rotation and beating motion
of active filaments on motility assays can be described with
a phenomenological ordinary differential equation for the
filaments."” The propulsion force of motor proteins has been
predicted based on a Langevin model for buckled, rotating
actin filaments and microtubules.”® Numerical studies with
Lattice-Boltzmann simulations and Brownian or multi-particle
collision dynamics have demonstrated that clamped of pinned
filaments composed of stresslets or propelled beads can show
cilia-like beating or rotation.'*"?

The behaviour of free-swimming actin filaments on motility
assays was reproduced in early numerical studies using the
Langevin equation.'® However, it was only recently that theore-
tical study of flexible, active filaments that can move freely has
received significant attention. Lattice-Boltzmann simulations
reveal that spontaneous symmetry breaking in chains of stress-
lets can lead to rotational or translational filament motion."”
Brownian dynamics simulations of short self-propelled filaments
suggest that different types of motion occur for single filaments'®
and that spontaneous rotational motion can arise for pairs of
filaments.”” A combination of Brownian dynamics simulations
and analytic theory shows that shot noise in worm-like filaments
leads to temporal superdiffusive filament movement and faster-
decaying tangent-tangent correlation functions.?® Finally, chains
of active colloids connected by springs have the same Flory
exponent but a different prefactor of the scaling law compared
to chains of passive colloids, as shown recently both analytically
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for beads without volume exclusion and numerically with Brownian
dynamics simulations for beads with volume exclusion.”*

The free-swimming behaviour of a worm-like filament that
is tangentially propelled with a homogeneous force is still
unexplored and is the subject of this work. The model is
introduced in Section 2. Results for the structural and dynamic
properties over a wide range or propulsion forces and filament
flexibilities are presented in Section 3. We find that the
filament can spontaneously form spirals, which is the mecha-
nism that dominates the behaviour of flexible filaments for
large propulsion forces. The relevance of our observations for
natural and artificial active agents is discussed in Section 4. We
present our conclusions in Section 5.

2 Model and methods

We study a single, active, worm-like filament, which is modelled
as a sequence of N + 1 beads connected via stiff springs. The
overdamped equation of motion is given by

yii = —ViU +F +F), (1)

where r; are the coordinates of bead i, y is the friction coefficient,
U is the configurational energy, Ff('gT is the thermal noise force,
and Fg) is the active force that drives the system out of equili-
brium. The configurational potential energy

U = Upond t Uangle + Urv [2)

is composed of a bond contribution between neighbouring
beads

(ST

Ubond =

N
SZ(|TU+1| —ro)za (3)
i=1
a bending energy
el 5
Uangle = ZZ (Fiin — Fir1ie2) s (4)
i=1

and an excluded volume term modelled with repulsive
Lennard-Jones interactions

N N+l
Ugv = ZZ”EV (riy), (5)
=1 j>i
[ro\2 (o\6 "
ugy(r) = 46{(;') (r) } +e r<27 (6)
0, r> 2%,

where r;; = r; — 1;is the vector between the position of the beads
i and j, ks is the spring constant for the bond potential, 7, is the
equilibrium bond length, x is the bending rigidity, and ¢ and ¢
are the characteristic volume-exclusion energy and effective
filament diameter (bead size).

The drag force yi; is the velocity of each bead times the

friction coefficient y. The thermal force F,(;};T is modelled as

white noise with zero mean and variance 2kgTy/At as described
in ref. 22. Note that hydrodynamic interactions (HI) are not
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Fig. 1 Filament model: beads are connected via stiff springs. The active
force acts tangentially along all bonds. Colour gradient indicates the force
direction.

included in our model. The model is thus in particular valid for
(i) neutral swimmers, for which HI are known to be of minor
importance,”** (ii) swimmers near a wall, where HI is of
less importance,®®?” and (iii) microorganisms that glide on a
surface, such as nematodes like C. elegans.*®*°

Without propulsion force, Fg) = 0, the model matches the
well-known worm-like chain model for semi-flexible polymers.***
For active filaments, we use a force per unit length f, that acts

tangentially along all bonds, i.e.,
N
F, = Zfiol‘uﬂ» (7)

as illustrated in Fig. 1. The force along each bond is distributed
equally onto both adjacent beads.

We consider systems with parameters chosen such that (i) kg
is sufficiently large that the bond length is approximately
constant ry, that (ii) the local filament curvature is low such
that the bead discretization does not violate the worm-like
polymer description, and that (iii) the thickness of the chain
has negligible impact on the results. When these requirements
are met, the system is fully characterized by two dimensionless

numbers,
K
L=— 8
éP/ kBTL7 ( )
pe— b _hL” )
"D kT’

where L = Nr, and &p are the length and persistence length of
the chain, respectively. £p/L is a measure for the bending
rigidity of the filament. The Péclet number Pe is the ratio of
convective to diffusive transport and measures the degree of
activity. For its definition, we use that the filament has a
contour velocity v, = f,/y1, and that the translational diffusion
coefficient D, = kgT/y,L, where we have introduced the friction
per unit length y; = y(N + 1)/L.

The ratio of these numbers

5 = peL/p =D22

(10)
which we call the flexure number, provides a ratio of activity to
bending rigidity. Previous studies showed that this number is
decisive for buckling instabilities of active filaments.">" It will
be shown below that this is also a determining quantity for
spiral stability and rotational diffusion.

This journal is © The Royal Society of Chemistry 2015
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Simulations were performed in two dimensions, where volume
exclusion interactions have major importance. Equations of
motions were integrated using an Euler scheme. Simulation
parameters and results are reported in dimensionless form, where
length are measured in units of the filament length L, energies in
units of the thermal energy kg7, and time in units of the
characteristic time for the filament to diffuse its own body length

T = L’y)/4kgT. (11)

In our simulations we used kg = 4000ksT/ry2, 1o = ¢ = L/N, and
¢ = kgT if not stated otherwise. A large parameter space for Pe
and p/L was explored by varying f;,, N, and . N was varied in
the range from 25 to 200 from the highest to the lowest {p/L.
Almost all simulations were run for more than 57. An initial
period of the simulation output is discarded in the analysis. The
timestep At was adjusted to the remaining settings to ensure
stable simulations. A list with all simulation settings is given in
the ESL{ Unless explicitly mentioned, results refer to simulations
that were started with a perfectly straight conformation.

All simulations were performed using the LAMMPS molecular
simulation package®* with in-house modifications to describe
the angle potential, the propulsion forces, and to solve the over-
damped equations of motion.

3 Results

The characteristic filament behaviour depends on its bending
rigidity and activity and can be divided into three regimes (see
Fig. 2). At low Pe or high &p/L, the “polymer regime”, the active
filament structurally resembles the passive filament with
Pe = 0. The main difference compared to the passive filament
is that the active force drives the filament along its contour,
leading to a directed translational motion—we name this
characteristic movement ‘“railway motion”. At high Pe and
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low ¢&p/L, the filament spontaneously winds up to a spiral.
The “spiral state” is characterized by ballistic rotation but only
diffusive translation. Spirals can spontaneously break up. Their
lifetime determines whether spiral formation has a minor
impact on the overall filament behaviour, the “weak spiral
regime” at intermediate Pe, or whether spirals are dominating,
the “strong spiral regime” at large Pe. Because spiral formation
has a major impact on both the structure and the dynamics,
features related to spiral formation are addressed first. Struc-
tural and dynamic properties of the elongated and spiral state
are presented afterwards.

3.1 Spiral formation

The processes that lead to the formation and break-up of
spirals are depicted in Fig. 3. Spontaneous spiral formation
(¢f Fig. 3a) results from the leading tip colliding with a
subsequent part of the chain. Volume exclusion then forces
the tip to bent. By further forward movement, the chain winds
to a spiral. Two spiral break-up mechanisms occurred in our
simulations. The first is the thermally activated mechanism in
Fig. 3b. The leading tip of the wound-up chain spontaneously
changes direction and the spiral deforms. This break-up mecha-
nism requires strong local bending and is therefore predominant
for small £p. The second mechanism is spiral break-up by widening
and is depicted in Fig. 3c. The bending potential widens the spiral
until the leading tip looses contact to the filament end. This
break-up mechanism is predominant when &p is too large for
spontaneous spiral break-up. Because high stiffness is also
unfavourable for spiral formation, spiral break-up by widening
was almost exclusively observed in simulations that started with
a spiral configuration.

To understand spiral formation more quantitatively, we
introduce the spiral number

s = (¢(L) — ¢(0))/2m, (12)

3 T =
oL o
2| i
S 1R ~
g S
> =L ]
0 0 i
0 1 2 3 0 1 2 3 3

z/L z/L

(c) strong spiral regime

(a) polymer regime (b) weak spiral regime

Fig. 2 Trajectories of the center of mass of the filament (red) and filament configurations from selected snapshots (grayscale, leading tip black). Arrows
point in the direction of movement. &p/L = 0.2 (with N = 100) in all plots; Pe increases from left to right. At Pe = 200 (left), there is not sign of spiral
formation. At Pe = 1000 (middle) spirals form occasionally, but the overall behaviour is dominated by an elongated chain. At Pe = 5000 (right), the spiral
state is predominant. The chain has a directed motion in the elongated state. In the spiral state, the translational motion is almost purely diffusive. This
leads to separated clusters in the trajectories for simulations in the strong spiral regime, visible for example in the upper left of the right image. The length
of the depicted trajectories corresponds to approximately 0.13z (left), 0.13t (middle), and 0.6t (right). Videos of the simulations of these examples are
given in the ESL¥
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(c) Spiral break-up by widening

Fig. 3 Spiral formation and break-up mechanisms. Numbers in each
panel provide the elapsed time. Leading tip is black. N = 100 in each case.
(@ and b) &p/L = 0.4, Pe = 10000, & = 25000. (c) &p/L = 1.0, Pe = 900,
& = 900.

where ¢(s) is the bond orientation at position s along the
contour of the filament, as measure for the instantaneous
chain configuration. The definition is illustrated for three
sample structures in Fig. 4a. It effectively measures how often
the filament wraps around itself. The time evolution of s is
depicted in Fig. 4b for the same Pe and ¢p/L as in Fig. 2. At Pe =
200, s is always close to zero. At Pe = 1000, s behaves similarly,
except that peaks with larger values for |s| occur occasionally,
i.e., when spirals with a short lifetime form. At Pe = 5000,
extended plateaus develop at large |s|. The spirals are wound up
stronger and have a much longer lifetime.

Probability distributions p(|s|) are depicted in Fig. 4c. For
the simulation without spirals (Pe = 200), the histogram resem-
bles the right half of a Gaussian distribution. For the simula-
tion in the weak spiral regime, p(|s|) is similar for low |s|, but
also has a small peak at |s| = 2 — 3. For strong spiral formation
at Pe = 5000, p(|s|) has only a small peak at low |s|, which
corresponds to the elongated state, and a large peak at large |s|,
the predominating spiral state. It turns out that the different
regimes can be well distinguished by the kurtosis

b))

where (...) denotes the ensemble average and o, is the stan-
dard deviation of s. Results for the kurtosis are shown in Fig. 4d
for selected &p/L. f, & 3 in the polymer regime, as expected for

(13)

Gaussian distributions. In the weak spiral regime, the small
peak at larger values increases the numerator in eqn (13) and
has only a weak impact on o, leading to an increase of f3,.
When the spiral state is dominating, o, grows drastically,
resulting in a much smaller kurtosis ff,. Note that to reduce
statistical uncertainties we symmetrized the s-distribution in
the computation of 8, by counting each measured |s| as +s and
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View Article Online

Soft Matter

—s and only used data from the spiral state for simulations that
do not show spiral break-up.

With the kurtosis as measure to characterize spiral formation,
a phase diagram can be constructed as depicted in Fig. 4e. Low
filament rigidity ¢ and high propulsion Pe is beneficial for
spiral formation. In particular, for a fixed propulsion strength
per unit length, any chain will form spirals if it is sufficiently
long, because increasing the chain length without modifying any
other parameter corresponds to moving to the lower right in the
phase diagram.

The dimensionless numbers ¢p/L and Pe completely charac-
terize the system if the filament diameter—or the filament
aspect ratio—is of minor importance. This is the true in the
entire polymer regime, where volume-exclusions interactions
hardly come into play because of the elongated chain structure.
For the spiral regimes, the aspect ratio has an impact on the
structure of the spiral and does in this way influence the
results. Which features of the spiral regime can be approxi-
mated well by the dimensionless numbers can be understood
from the spiral formation and break-up mechanisms. The
aspect ratio is hardly relevant for spiral formation and spiral
break-up by widening, where the decisive moments are when
the filament tip collides with subsequent parts of the chain, or
when it looses contact to the chain end, respectively. That
break-up by widening is characterized well by the dimension-
less numbers is also confirmed by a series of simulations that
we start from a spiral configuration in which we vary N, f,, «,
and kgT. It turns out that spirals will break up by widening if

& < 1000 — 1500. (14)

In contrast, spontaneous spiral break-up by a change of
orientation of the leading tip is dependent on a strong local
curvature close to the tip and the structure of the spiral, which
in turn is dependent on the filament diameter. The dimension-
less description does therefore not provide a full characteriza-
tion of the strong spiral regime, where spontaneous spiral
break-up is the only mechanism to escape the spiral state. This
is also confirmed by results for spirals that never broke up
(¢f dark red squares in Fig. 4e); results for £p/L = 0.2 and &p/L =
0.14 show non-monotonic behaviour in the direction of &p/L.
This is a result of a combination of that the dimensionless
description is only partially valid in this regime and that we
chose N = 200 for &p/L < 0.2 but N =100 for 0.2 > &/L > 2.0 in
our simulations, ie., the aspect ratio L/c is halved in our
simulations for filaments with &p/L < 0.2.

Finally, the bead discretization with the chosen parameters
favours a staggered arrangement of beads of contacting parts of
the filament,*>** which implies an effective sliding friction
between these parts. To study the importance of this effect,
we increase the diameter of the beads at fixed bond length so
that neighboring beads are heavily overlapping, which leads to
a strongly smoothened interaction potential. Results for an
increased diameter ¢ = 2L/N are shown in Fig. 4b and d. We
find that the spiral formation frequency is hardly affected by
smoothening the filament surface. In contrast, spontaneous spiral

This journal is © The Royal Society of Chemistry 2015
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Fig. 4 (a) Definition of the spiral number s. The measure can effectively distinguish between elongated (red), weakly wound-up (blue), and strongly

wound-up (orange) conformations. (b) Evolution of the spiral number for the examples given in Fig. 2 with &p/L = 0.2 (N = 100). Lines centered around
|s| = 0 display results for o = L/N; lines centered around |s| = 8 (shifted upwards for clarity) show results for ¢ = 2L/N. (c) Probability distributions of the
absolute value of the spiral number p(|s|) for the same examples with ¢ = L/N. (d) Kurtosis f, for selected filament rigidities. Circles: o = L/N, triangles:
o = 2L/N. (e) Phase diagram. Background colour: kurtosis. Blue circles: polymer regime. Cyan triangles: weak spiral regime. Light and dark red squares:
strong spiral regime. For the dark red squares, spirals did not break up during the simulations once formed. Black lines are a guide to the eye. Green area:
threshold for spiral stability against break-up by widening. Spirals above this threshold will unfold by widening, spirals below will not. Purple: parameter
space that can be obtained by actin filaments on a myosin carpet at T = 300 K using parameters for f, and «x from ref. 12.

break-up is largely alleviated for the smoother filament, leading to
decreased spiral life-time, as can be seen from the evolution of
s for Pe = 5000 in Fig. 4b. Smoother filaments thus show a
qualitatively similar phase behaviour with slightly moved phase
boundaries.

3.2 Structural properties

The structural properties of the filament conformations can be
best understood from the end-to-end vector r., as depicted in
Fig. 5. As long as no spirals form, simulation results are in good
agreement with the Kratky-Porod model (valid for worm-like,
non-active polymers without volume-exclusion interactions)
that predicts®®*

(r*) &\’ L
12 *2f_ (Z) (l—e L/g)

in two dimensions. At low £p/L, volume-exclusion interactions
lead to slight deviations between the Kratky-Porod model
and the simulation results. Strong deviations between the
Kratky-Porod model and simulation results only occur in the
strong spiral region in the phase diagram. The same trend
was observed for the tangent-tangent correlation function, the

(15)

radius of gyration, and the static structure factor, but is not
reported here to avoid unnecessary repetition.

This journal is © The Royal Society of Chemistry 2015
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Fig. 5 Symbols: mean end-to-end distance /(r.2) over Pe for different

values of &p/L. Solid lines: \/(r.2) as predicted from the Kratky—Porod
model. The symbol shape indicates the region in the phase diagram: circle:
polymer regime; triangle: weak spiral regime, squares: strong spiral
regime. N varies from 25 to 200 from large to small &p/L.

3.3 Dynamic properties

The characteristic filament motion can be understood from the
mean square displacement (MSD) of a bead j + i relative to bead
J, as shown in Fig. 6. For comparison, the MSD of the reference
bead j of a passive filament is also shown. Note that the
displacement of this bead is subdiffusive at the short lag times
shown here.*® Displacement functions of the propelled beads

Soft Matter, 2015, 11, 7181-7190 | 7185



Open Access Article. Published on 06 August 2015. Downloaded on 9/17/2019 8:11:43 AM.

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper
10! e
Yy 100
= F
N: 10-1 [ =750
S F i = 20
5 1072 Li=10
Fi=5
I 10-3f"
7 Fi =2
o 10t fa=1
] i
E 107%Lki=0
10—6 O P U ST P N T P TR PR T YRRV
10-7 10=% 1075 107* 1073 1072
t/T

Fig. 6 Mean square displacement of bead 25 + i with respect to bead
j =25 (N =100). &p/L = 0.3 for all lines. Black line: Pe = 0, coloured lines:
Pe = 1000 (weak spiral regime). Black line describes purely diffusive
motion of the leading bead j.

are always larger than in the passive case. The curves show
three distinct regimes. At small lag times, the MSDs of active
filaments display plateaus due to the average distance of the
two beads j + 7 and j along the filament. At large lag times,
the increased motion caused by activity effects the MSDs of the
propelled beads to grow more rapidly than that of the passive
bead. The relevant part of the MSD that shows that the
characteristic filament motion is movement along its contour
is at intermediate lag times, where the MSDs of the propelled
beads pass through minima that touch the reference MSD for
thermal motion. At that lag time, the bead j + i has moved
approximately to the position of bead j at zero lag time. The
beads have moved along the chain contour, similar to the
movement of a train on a railway. The deviation from the exact
starting position of bead j exactly matches the thermal motion,

(a)
N o~

so(t) = s(to) + ve(t — to)

. D

-‘\_\/-

gﬁ/?\“;‘\h jf\/ oo

(b)SO (to)

Fig. 7 (a) Series of snapshots of a filament with &p/L = 0.3 (with N = 100)
and Pe = 1000. The chain moves along its contour superimposed with
thermally activated motion. Colouring is to improve the distinctness of the
chains. (b) Idealized railway motion in the absence of diffusion. The
filament (thick black line) moves with velocity v. along the contour of an
infinite chain with same &p (gray line). so(t) runs along the contour of the
infinite chain and marks the end point of the filament.
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Fig. 8 (a) Mean square rotation of the end-to-end vector; the red line is

from the strong spiral regime, the blue from the polymer regime (N = 100).
(b) Rotational diffusion coefficient D, as a function of the flexure number .
Symbol shape indicates the region in the phase diagram: circle: polymer
regime; triangle: weak spiral regime. Gray lines are predictions with
eqgn (24) for different D, ,; for the lowermost line D, = 9/47t7. N varies
from 25 to 200 from large to small &p/L.

which results in the MSDs of the propelled beads touching
the MSD of the passive filament. Thus, the characteristic move-
ment of the filament is motion along its contour superimposed
with thermal noise, as depicted in Fig. 7a. Note that &p/L = 0.3 was
selected in Fig. 6 because this corresponds to a rather flexible
filament, where stronger deviations from the characteristic railway
motion might be expected. This type of motion was observed in all
simulations in the polymer regime and weak spiral regime. In the
strong spiral regime, the MSDs of the propelled beads even fall
below the reference line for purely thermal motion.

The rotational diffusion can be accessed from the orienta-
tion of the end-to-end vector 0. Its mean square rotation (MSR)
is given in Fig. 8a. Note that complete rotations around the axis
are accounted for in our computations. 6(¢) can therefore be
much larger than 2r. In both the spiral and the elongated state,
there is a regime at short lag times in which the MSR is
dominated by the internal filament flexibility. For the spiral
state, this regime is followed by a ballistic regime with MSR oc £,
For simulations in which the spirals break up spontaneously, a
subsequent regime at high times with MSR oc ¢ is expected but
could not be detected in our simulations because of finite
simulation time and strong noise at large lag times in the MSR.
For the elongated state, the regime dominated by internal flexi-
bility is followed by a diffusive regime with MSR oc t.

This journal is © The Royal Society of Chemistry 2015
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The rotational diffusion coefficient D, can be extracted by
fitting MSR = 2D;¢ to the regime of the MSR with gradient unity
on a double-log scale. Measured D, are given in Fig. 8b as a
function of the flexure number §. The diffusion coefficients
collapse to a single curve, which has a plateau at low §§ and then
grows linearly. Strong deviations from this trend are only
observed at high § when the filament is in the weak spiral
regime, and at & = Pe = 0 for flexible filaments, where strong
deviations from a rod-like shape increase D.

The rotational diffusion coefficient D, can be predicted from
the characteristic railway motion in Fig. 7 and the relation
of the rotational diffusion coefficient to the autocorrelation
function of the end-to-end tangent vector ¢,

(te(t)t.(0)) = e P,

which is valid for lag times ¢ that are sufficiently large such that
variation of . is not dominated by non-diffusive behaviour at early
lag times caused by the filament flexibility (¢f. Fig. 8a). With

(16)

L

t.(1) = lJ t(s, t)ds, (17)
L}y

where #(s,t) is the tangent vector at position s of the filament at

time ¢, the left hand side of eqn (16) becomes

1 L L
() 1(0) = 35| @[ @t o009

o Jo
where the order of summations has been changed to arrive at the
right-hand side of eqn (18). As a representation of the character-
istic railway motion (¢f Fig. 7b), we write

t(s,6) = t(s + v.t,0). (19)

Note that this equation disregards the passive equilibrium
rotation D, ,. With eqn (19) and the expression for the tangent-

tangent correlation function of worm-like polymers,*>*' the inte-
grand in eqn (18) becomes
(t(s,1) - #(s',0)) = (t(s +ve1,0) - #(s', 0))
(20)
= exp[—(s + vet —5)/&p]-
Integrating eqn (18) provides
<te[t)'te(0)> _ _éPZ/LZ(efvct/ip(Z _ eL/Cfp _ efL/Cfp)).
(21)

A second order Taylor expansion in (small) L/&p then gives
(te(t)1.(0)) = exp[—vt/Ep], (22)

so that a comparison with eqn (16) finally yields the activity-

induced rotational diffusion
Dy a = vc/Ep. (23)

Note that v./&p = &/47. Assuming that uncorrelated activity-
induced and thermal rotation D., and D, contribute to the
overall rotation, we write

Dy =Dyp + Dyy, (24)

This journal is © The Royal Society of Chemistry 2015
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Fig. 9 Mean square displacement of the center of mass. Dashed coloured
lines: simulation results. Gray solid lines: predictions using eqn (25).
(a) Results for &p = 4.0 (polymer regime, N = 50) and different values of
Pe increasing from 0 to 100 000. vq is predicted from egn (27), D, from
eqn (24) with D, = 9/4771 (b) Results for &p/L = 0.3 (spirals at large Pe,
N = 100). vo from egn (27), D, is determined from a fit to the measured
MSD, because eqgn (24) is only valid in the polymer regime. Spiral formation
leads to a decreased MSD.

where D, depends on p/L and has the lower bound D, =
(9/4)c™" for rod-like filaments.>® As can be seen from Fig. 8b,
eqn (24) matches the simulated rotational diffusion coefficient
accurately.

The characteristics of the center-of-mass MSD are shown in
Fig. 9. For the polymer regime, the typical S-shape of subsequent
short-time diffusive, intermediate-time ballistic, and long-time
effective diffusive behaviour develops;*” stronger propulsion
increases the MSD. An important difference compared to rigid
bodies is that the transition time 7, = 1/D; to long-time diffusive
behaviour is dependent on the propulsion strength.

When spiral formation becomes important, the general
trend of the MSD changes, as shown in Fig. 9b for a flexible
filament. In the polymer regime or weak spiral regime, increas-
ing Pe leads to a larger displacement. In the strong spiral
regime, however, the MSD decreases. For very stable spirals,
the MSD is only weakly affected by the propulsion and almost
matches the case of purely diffusive motion.

The MSD for active point particles, spheres, or stiff rods is
given by"

<(rc(t) - rC(O))Z > = 4Dt + (ZVOZ/DrZ)[Drt + exp(_Drt) - 1])
(25)
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where Dy is the translational diffusion coefficient and v, is a
ballistic velocity. It turns out that eqn (25) can be used to
describe the MSD for active filaments, when the three coeffi-
cients Dy, vy, and D, are chosen properly. The translational
diffusion coefficient is D, = L*/4t = kgT/y,L. We predict the
rotational diffusion coefficient D, with eqn (24). Finally the
effective velocity can be expressed via

[Fo

yl—L (26)

Vo =
as a balance of the net external force |Fp,| with the total friction
force yiLv,. |Fp| can conveniently be expressed as the propulsive
force per bond f, times the end-to-end vector, thus leading to

S)

27
nL (@7)

Vo =
As shown in Fig. 9, using these correlations for the coefficients
provides an accurate prediction of the MSD.
The last item we address is the effect of propulsion on
conformational sampling. Fig. 10a shows results for the
dynamic structure factor

N+1 N+1

S(g,1) —<N+1ZZCXP{"1 r;(0

averaged over different directions of q. In the phase without
spirals, S(q,t)/S(q,0) decays more rapidly with increasing Pe,
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Fig. 10 (a) S(g.t)/S(q.0) for &p/L = 1.0, N = 100, g ~ 5n/L and different Pe.

(b) 75(q) for g ~ 5n/L. Circles correspond to the polymer regime, triangles
to the weak spiral regime, and squares to the strong spiral regime in both
plots.
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indicating a faster change of conformations with increasing
propulsion. When spirals form, S(g,t)/S(¢,0) is independent of
Pe and larger than S(gq,t)/S(¢,0) at Pe = 0, indicating a slow
change of conformations, which agrees with the observation of
hardly any internal motion of the chain in this regime in our
simulation output. Note that for the strong spiral regime, the
data is from simulations where spirals formed spontaneously
and did not break up. The depicted data is a result of averaging
over the spiral states only.

To better quantify the behaviour of S(g,t), we compute the
characteristic decay time of the dynamic structure factor

[,18(q, t)dz

TS(C[) = ur[S(q7 t)dl

(29)

Results for 15(q) at ¢ = 57/L, a g-vector large enough to capture
the behaviour of mainly the internal degrees of freedom, are
given in Fig. 10b. t5(g) decays slowly at low Pe. At high Pe, g
decays inversely proportional to Pe when no spirals form. This
is consistent with the picture that instantaneous conformations
are essentially identical to those of passive filaments, but they
are traversed with velocity v, corresponding to t oc Pe™". In the
strong spiral regime, 75 is large and independent of Pe, which is
a sign for that conformational changes are irrelevant and that
15 is determined by the quasi-diffusive center of mass move-
ment. Note that the measured tg at different £p/L collapse to a
single line for both the polymer and the strong spiral regime.

4 Discussion

The spontaneous formation of spirals is the feature dominating
the overall behaviour of self-propelled filaments, both for
dynamic and structural properties. Formation of spirals was
previously observed for long, slender bacteria surrounded by
short bacteria.” It was concluded that interaction with other
active particles is a prerequisite for spiral formation. In contrast,
the study at hand shows that spirals can form even for isolated
filaments, as long as (i) the filament is sufficiently flexible, (ii) the
propulsion is sufficiently strong, and (iii) excluded volume inter-
actions force the tip of the filament to wind up.

The first two conditions will be met automatically for any
real system by choosing L sufficiently large and leaving all other
parameters constant (leading to increased Pe and decreased
Epl/L, i.e., favouring spirals). Meeting the third condition can in
general not be achieved so easily. A free-swimming filament in
three dimensions or a filament in two dimensions with low
resistance of crossing its own body will not form spirals. This is
also one reason why spiral formation has not yet been observed
in more experimental studies. Agents that are similar to our
model are actin filaments or microtubules on a motility assay.
The former have a high crossing probability,® formation of
spirals is therefore not expected. The area enclosing the actin-
filament parameter space in Fig. 4 must thus be understood as
that the regime where the flexibilities and propulsion strengths
permit spiral formation can in principle be reached in real
systems, and not so much as that sufficiently long actin filaments
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will form spirals. Microtubules on dynein carpets, which have a
much lower crossing probability,>** will possibly form spirals if
they are grown to sufficient size.

Overall, except for slender bacteria,’ we are unaware of a
microscopic example in which spiral formation was observed.
Yet, the formation of spirals is a feature that deserves more
attention in the future. First, formation of spirals is an extremely
simple non-equilibrium phenomenon that, in contrast to many
other phenomena of active matter, arises for a single self-
propelled particle and cannot easily be mapped qualitatively to
passive systems in which activity is replaced by attractive forces. It
can thus be used as a model phenomenon for the study of non-
equilibrium thermodynamics. Second, our model is very simple; a
realization in experiment seems possible within the near future.
Finally, the formation of spirals leads to a sudden, strong change
in structural and dynamic properties. The effect can thus poten-
tially be used as a switch on the microscopic scale.

5 Summary and outlook

We report an extensive study for the behaviour of dilute, self-
propelled, worm-like filaments in two dimensions. The spontaneous
formation and break-up of spirals is the feature that dominates the
filament behaviour. Spiral formation is favoured by strong propul-
sion and low bending rigidity. Propulsion has a noticeable impact
on structural properties only when spirals are dominating. The
Kratky-Porod model™ is therefore valid for filaments that are weakly
propelled or have high bending rigidity. When spiral formation
becomes significant, structural properties change drastically.

The characteristic filament motion is what we call the railway
behaviour. The chain moves along its own contour superimposed
with noise. With the understanding of the structural properties
and the characteristic motion, rotational diffusion and the center-
of-mass mean square displacement can be predicted to high
accuracy when no spirals form. In contrast to rigid bodies,
propulsion has an impact on the rotational diffusion coeffi-
cient. Finally, propulsion enhances conformational sampling
in the regime without spirals.

An obvious next step is understanding the collective motion
of such active filaments. We expect that our single filament
results will help to understand the collective behaviour, which
is nonetheless strongly influenced by the additional interac-
tions. In particular collision with other constituents might
enhance spiral formation and lead to swirl-like patterns.
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