000256223 001__ 256223
000256223 005__ 20210129220641.0
000256223 0247_ $$2doi$$a10.1063/1.4932123
000256223 0247_ $$2ISSN$$a0003-6951
000256223 0247_ $$2ISSN$$a1077-3118
000256223 0247_ $$2WOS$$aWOS:000363781900023
000256223 0247_ $$2Handle$$a2128/17309
000256223 037__ $$aFZJ-2015-06199
000256223 082__ $$a530
000256223 1001_ $$0P:(DE-HGF)0$$aPaik, Hanjong$$b0
000256223 245__ $$aTransport properties of ultra-thin VO2 films on (001) TiO2 grown by reactive molecular-beam epitaxy
000256223 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2015
000256223 3367_ $$2DRIVER$$aarticle
000256223 3367_ $$2DataCite$$aOutput Types/Journal article
000256223 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1445522571_1453
000256223 3367_ $$2BibTeX$$aARTICLE
000256223 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000256223 3367_ $$00$$2EndNote$$aJournal Article
000256223 520__ $$aWe report the growth of (001)-oriented VO2 films as thin as 1.5 nm with abrupt and reproduciblemetal-insulator transitions (MIT) without a capping layer. Limitations to the growth of thinnerfilms with sharp MITs are discussed, including the Volmer-Weber type growth mode due to thehigh energy of the (001) VO2 surface. Another key limitation is interdiffusion with the (001) TiO2substrate, which we quantify using low angle annular dark field scanning transmission electronmicroscopy in conjunction with electron energy loss spectroscopy. We find that controlling islandcoalescence on the (001) surface and minimization of cation interdiffusion by using a low growthtemperature followed by a brief anneal at higher temperature are crucial for realizing ultrathin VO2films with abrupt MIT behavior. VC 2015 AIP Publishing LLC.
000256223 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000256223 588__ $$aDataset connected to CrossRef
000256223 7001_ $$0P:(DE-HGF)0$$aMoyer, Jarrett A.$$b1
000256223 7001_ $$0P:(DE-HGF)0$$aSpila, Timothy$$b2
000256223 7001_ $$0P:(DE-HGF)0$$aTashman, Joshua W.$$b3
000256223 7001_ $$0P:(DE-HGF)0$$aMundy, Julia A.$$b4
000256223 7001_ $$0P:(DE-HGF)0$$aFreeman, Eugene$$b5
000256223 7001_ $$0P:(DE-HGF)0$$aShukla, Nikhil$$b6
000256223 7001_ $$0P:(DE-HGF)0$$aLapano, Jason M.$$b7
000256223 7001_ $$0P:(DE-HGF)0$$aEngel-Herbert, Roman$$b8
000256223 7001_ $$0P:(DE-Juel1)128648$$aZander, Willi$$b9
000256223 7001_ $$0P:(DE-Juel1)128631$$aSchubert, Jürgen$$b10
000256223 7001_ $$0P:(DE-HGF)0$$aMuller, David A.$$b11
000256223 7001_ $$0P:(DE-HGF)0$$aDatta, Suman$$b12
000256223 7001_ $$0P:(DE-HGF)0$$aSchiffer, Peter$$b13
000256223 7001_ $$0P:(DE-HGF)0$$aSchlom, Darrell G.$$b14$$eCorresponding author
000256223 773__ $$0PERI:(DE-600)1469436-0$$a10.1063/1.4932123$$gVol. 107, no. 16, p. 163101 -$$n16$$p163101 -$$tApplied physics letters$$v107$$x1077-3118$$y2015
000256223 8564_ $$uhttp://scitation.aip.org/content/aip/journal/apl/107/16/10.1063/1.4932123
000256223 8564_ $$uhttps://juser.fz-juelich.de/record/256223/files/HanJon%20Paik_APL-VO2_Cornell_1.4932123.pdf$$yOpenAccess
000256223 8564_ $$uhttps://juser.fz-juelich.de/record/256223/files/HanJon%20Paik_APL-VO2_Cornell_1.4932123.gif?subformat=icon$$xicon$$yOpenAccess
000256223 8564_ $$uhttps://juser.fz-juelich.de/record/256223/files/HanJon%20Paik_APL-VO2_Cornell_1.4932123.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000256223 8564_ $$uhttps://juser.fz-juelich.de/record/256223/files/HanJon%20Paik_APL-VO2_Cornell_1.4932123.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000256223 8564_ $$uhttps://juser.fz-juelich.de/record/256223/files/HanJon%20Paik_APL-VO2_Cornell_1.4932123.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000256223 8564_ $$uhttps://juser.fz-juelich.de/record/256223/files/HanJon%20Paik_APL-VO2_Cornell_1.4932123.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000256223 909CO $$ooai:juser.fz-juelich.de:256223$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000256223 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128648$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000256223 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128631$$aForschungszentrum Jülich GmbH$$b10$$kFZJ
000256223 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000256223 9141_ $$y2015
000256223 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000256223 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL PHYS LETT : 2014
000256223 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000256223 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000256223 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000256223 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000256223 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000256223 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000256223 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000256223 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000256223 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000256223 920__ $$lyes
000256223 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000256223 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000256223 980__ $$ajournal
000256223 980__ $$aVDB
000256223 980__ $$aUNRESTRICTED
000256223 980__ $$aI:(DE-Juel1)PGI-9-20110106
000256223 980__ $$aI:(DE-82)080009_20140620
000256223 9801_ $$aFullTexts