001     256223
005     20210129220641.0
024 7 _ |a 10.1063/1.4932123
|2 doi
024 7 _ |a 0003-6951
|2 ISSN
024 7 _ |a 1077-3118
|2 ISSN
024 7 _ |a WOS:000363781900023
|2 WOS
024 7 _ |a 2128/17309
|2 Handle
037 _ _ |a FZJ-2015-06199
082 _ _ |a 530
100 1 _ |a Paik, Hanjong
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Transport properties of ultra-thin VO2 films on (001) TiO2 grown by reactive molecular-beam epitaxy
260 _ _ |a Melville, NY
|c 2015
|b American Inst. of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1445522571_1453
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We report the growth of (001)-oriented VO2 films as thin as 1.5 nm with abrupt and reproduciblemetal-insulator transitions (MIT) without a capping layer. Limitations to the growth of thinnerfilms with sharp MITs are discussed, including the Volmer-Weber type growth mode due to thehigh energy of the (001) VO2 surface. Another key limitation is interdiffusion with the (001) TiO2substrate, which we quantify using low angle annular dark field scanning transmission electronmicroscopy in conjunction with electron energy loss spectroscopy. We find that controlling islandcoalescence on the (001) surface and minimization of cation interdiffusion by using a low growthtemperature followed by a brief anneal at higher temperature are crucial for realizing ultrathin VO2films with abrupt MIT behavior. VC 2015 AIP Publishing LLC.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Moyer, Jarrett A.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Spila, Timothy
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Tashman, Joshua W.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Mundy, Julia A.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Freeman, Eugene
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Shukla, Nikhil
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Lapano, Jason M.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Engel-Herbert, Roman
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Zander, Willi
|0 P:(DE-Juel1)128648
|b 9
700 1 _ |a Schubert, Jürgen
|0 P:(DE-Juel1)128631
|b 10
700 1 _ |a Muller, David A.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Datta, Suman
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Schiffer, Peter
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Schlom, Darrell G.
|0 P:(DE-HGF)0
|b 14
|e Corresponding author
773 _ _ |a 10.1063/1.4932123
|g Vol. 107, no. 16, p. 163101 -
|0 PERI:(DE-600)1469436-0
|n 16
|p 163101 -
|t Applied physics letters
|v 107
|y 2015
|x 1077-3118
856 4 _ |u http://scitation.aip.org/content/aip/journal/apl/107/16/10.1063/1.4932123
856 4 _ |u https://juser.fz-juelich.de/record/256223/files/HanJon%20Paik_APL-VO2_Cornell_1.4932123.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/256223/files/HanJon%20Paik_APL-VO2_Cornell_1.4932123.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/256223/files/HanJon%20Paik_APL-VO2_Cornell_1.4932123.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/256223/files/HanJon%20Paik_APL-VO2_Cornell_1.4932123.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/256223/files/HanJon%20Paik_APL-VO2_Cornell_1.4932123.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/256223/files/HanJon%20Paik_APL-VO2_Cornell_1.4932123.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:256223
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)128648
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)128631
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL PHYS LETT : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21