001     256229
005     20230426083129.0
024 7 _ |a 10.1103/PhysRevB.92.115448
|2 doi
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2128/9353
|2 Handle
024 7 _ |a WOS:000362084800004
|2 WOS
024 7 _ |a altmetric:4270421
|2 altmetric
037 _ _ |a FZJ-2015-06201
082 _ _ |a 530
100 1 _ |a Mehl, Sebastian
|0 P:(DE-Juel1)145051
|b 0
|e Corresponding author
245 _ _ |a Simple operation sequences to couple and interchange quantum information between spin qubits of different kinds
260 _ _ |a College Park, Md.
|c 2015
|b APS
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1445437560_1446
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Efficient operation sequences to couple and interchange quantum information between quantum dot spin qubits of different kinds are derived using exchange interactions. In the qubit encoding of a single-spin qubit, a singlet-triplet qubit, and an exchange-only (triple-dot) qubit, some of the single-qubit interactions remain on during the entangling operation; this greatly simplifies the operation sequences that construct entangling operations. In the ideal setup, the gate operations use the intraqubit exchange interactions only once, and entangling operations with gate times similar to typical single-qubit operations are constructed. The limitations of the entangling sequences are discussed, and it is shown how quantum information can be converted between different kinds of quantum dot spin qubits. These gate sequences are useful for large-scale quantum computation because they show that different kinds of coded spin qubits can be combined easily, permitting the favorable physical properties of each to be employed.
536 _ _ |a 144 - Controlling Collective States (POF3-144)
|0 G:(DE-HGF)POF3-144
|c POF3-144
|f POF III
|x 0
542 _ _ |i 2015-09-30
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a DiVincenzo, David
|0 P:(DE-Juel1)143759
|b 1
|u fzj
773 1 8 |a 10.1103/physrevb.92.115448
|b American Physical Society (APS)
|d 2015-09-30
|n 11
|p 115448
|3 journal-article
|2 Crossref
|t Physical Review B
|v 92
|y 2015
|x 1098-0121
773 _ _ |a 10.1103/PhysRevB.92.115448
|g Vol. 92, no. 11, p. 115448
|0 PERI:(DE-600)2844160-6
|n 11
|p 115448
|t Physical review / B
|v 92
|y 2015
|x 1098-0121
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/256229/files/PhysRevB.92.115448.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/256229/files/PhysRevB.92.115448.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/256229/files/PhysRevB.92.115448.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/256229/files/PhysRevB.92.115448.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/256229/files/PhysRevB.92.115448.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/256229/files/PhysRevB.92.115448.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:256229
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)143759
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|2 G:(DE-HGF)POF3-100
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2014
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 1 _ |a UNRESTRICTED
980 1 _ |a FullTexts
999 C 5 |a 10.1103/RevModPhys.79.1217
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.85.961
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.57.120
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.89.147902
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/35042541
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nnano.2014.153
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.115.106802
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature11449
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nnano.2014.216
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.98.050502
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nphys1424
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.105.216803
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1073/pnas.1412230111
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nnano.2013.168
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/sciadv.1500214
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.111.050502
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.111.050501
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.90.045404
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.111.050503
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nphys174
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.74.041307
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/ncomms6156
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.108.046807
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature11559
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.110.066802
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nnano.2014.211
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/27/15/154205
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.72.022319
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.91.085419
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.80.052312
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nmat2420
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/30156
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.112.236801
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevX.5.031024
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.4930909
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature05065
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1148092
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.107.146801
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.113.267601
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.76.1037
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1116955
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.87.195309
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 J. J. Sakurai
|y 1994
|2 Crossref
|t Modern Quantum Mechanics
|o J. J. Sakurai Modern Quantum Mechanics 1994
999 C 5 |a 10.1103/PhysRevA.86.032324
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevX.2.031007
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.110.146804
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.59.2070
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.96.100501
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.83.165301
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nphys1856
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.108.086802
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.113.150501
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 M. A. Nielsen
|y 2000
|2 Crossref
|t Quantum Computation and Quantum Information
|o M. A. Nielsen Quantum Computation and Quantum Information 2000
999 C 5 |a 10.1063/1.4869108
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.4875909
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevX.2.011006
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21