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Efficient operation sequences to couple and interchange quantum information between quantum dot spin

qubits of different kinds are derived using exchange interactions. In the qubit encoding of a single-spin qubit,

a singlet-triplet qubit, and an exchange-only (triple-dot) qubit, some of the single-qubit interactions remain

on during the entangling operation; this greatly simplifies the operation sequences that construct entangling

operations. In the ideal setup, the gate operations use the intraqubit exchange interactions only once, and

entangling operations with gate times similar to typical single-qubit operations are constructed. The limitations

of the entangling sequences are discussed, and it is shown how quantum information can be converted between

different kinds of quantum dot spin qubits. These gate sequences are useful for large-scale quantum computation

because they show that different kinds of coded spin qubits can be combined easily, permitting the favorable

physical properties of each to be employed.
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I. INTRODUCTION

Small arrays of singly occupied quantum dot (QD) qubits

are now fabricated in GaAs and Si with great reliability [1,2].

These setups are of high interest for quantum computation

because the electron spin can be used as a qubit [3]. Besides

the single-spin qubit encoding, also more advanced qubit en-

codings have been suggested. Most promising are the singlet-

triplet qubit (STQ) [4] and the exchange-only qubit [5]. These

qubits encode quantum information in the sz = 0 spin subspace

of a two-electron double QD (DQD) or in two of the eight pos-

sible spin configurations of a three-electron triple QD (TQD).

For all the described qubits, single-qubit gates have been

realized with high fidelities. Electric [6,7] or magnetic [8–10]

field pulses can nowadays control single spins with very high

fidelities. High-fidelity gates for STQs are also possible when

the electron configuration of the DQD is modified, while the

magnetic field across the DQD is inhomogeneous [11]. Exper-

imentally, a preparation of the nuclear magnetic field [12,13]

or a micromagnet [14] created such static magnetic field

configurations. The three-electron TQD can be operated using

exchange interactions alone [5,15,16]; more optimal qubit

control has been realized if some of the exchange interactions

are not reduced to zero [17,18]. Two-qubit gates have been

proposed for all the qubit encodings using exchange couplings

[3–5,19,20], while experiments have realized these gates

only for single-spin qubits [21]. STQs or exchange-only

qubits can be coupled indirectly via their charge sector, e.g.,

using Coulomb interactions [22] or couplings via cavity

modes [17,23,24]. These approaches have not been successful

yet due to a high amount of dephasing that is caused by charge

noise [25–28].

There are pros and cons to either qubit encoding. The

longest coherence times were measured for single-spin

qubits [9,29,30]. While short-distance exchange couplings

realized high-fidelity entangling gates [21], high-fidelity long-
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distance couplings remain difficult. Single-qubit operations

for STQs are arguably even easier than for the single-spin

qubits because they use electric control pulses, while only

a static magnetic field gradient across the DQDs needs to

be prepared [11]. STQs can be tuned to operation points

where the qubit states have different charge characters,

which makes these STQs a more natural candidate for long-

distance couplings (e.g., via cavities) than single-spin qubits.

The exchange-only qubit is the natural generalization of a

STQ: single-qubit and two-qubit gates can be controlled

all-electrically (even without preparations of local magnetic

fields) [5]. Modifications of their operation points also allows

long-distance couplings with methods similar to for the STQs.

The present study assumes that universal qubit control

is possible for the encoded qubits, while two QDs from

different qubits are exchange coupled. Operation sequences

for entanglement generation and qubit conversion are derived

between QD qubits of different kinds. The operation sequences

profit from always-on single qubit Hamiltonians during the

entanglement sequences, as in earlier studies of TQDs [20,31].

For STQs, the magnetic fields at the QDs should be prepared

independently. Their values need to differ anyway to realize

single-qubit control. For the exchange-only qubit, a linear

TQD arrangement is considered. Here, the exchange couplings

between the neighboring pairs of QDs remain always at

similar magnitudes. Such setups have been used in a previous

experiment [17,18]. The TQD is operated in the (1,1,1)

configuration (i.e., there is one electron at each QD), while

virtual tunnelings of the electron at the middle QD to the

outer QDs are strongly enhanced by increasing the chemical

potential of the middle QD compared to the outer QDs [17,18].

The main findings of this paper are explicit operation se-

quences to entangle QD qubits of different kinds. The always-

on single-qubit couplings greatly simplify the operation se-

quences because they reduce the possibility of leakage from the

computational subspace. Effective Hamiltonians and entan-

gling sequences are derived; the setups only require two opera-

tion sequences to entangle a single-spin qubit and a STQ (or an

exchange-only qubit and a STQ), or four operation sequences
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to entangle a single-spin qubit and an exchange-only qubit. It

is shown how the entanglement sequences can be used to swap

quantum information between the qubits, and the limitations

of the operation sequences are discussed. It should be em-

phasized that only the standard parameter regimes of current

experiments are used to operate the spin qubits. Even though

the interqubit exchange couplings are weak, still, the gate times

of the entangling gates reach tens of nanoseconds. That is, they

are comparable to the gate times for normal single-qubit gates.

The simplicity of the entangling operations shows that a

large lattice of QD qubits does not necessarily need to contain

identical types of coded qubits (e.g., the description of large

scale quantum computation with STQs in Ref. [32]). One

can easily convert and couple different QD qubits using the

operation sequences derived in this paper. The standard fault-

tolerant quantum computation approaches, like the surface

code [33], permit combinations of different kinds of coded

qubits. As a consequence, it is possible to use a qubit encoding

just for the situation when it is most optimal. It is known that

single-spin qubits have exceptionally long coherence times,

which makes them an ideal quantum memory [8,34]. Encoded

spin qubits, like the STQ or the exchange-only qubit, can be

employed in their orbital sector, which makes them more ideal

for readout or for long-distance couplings [1,22]. It is also

possible to use the described operation sequences to couple QD

spin qubits to other spin qubits, like, e.g., donor-bound spin

qubits [35]. The electron spin bound to a donor atom is a well-

known qubit candidate with many impressive experiments of

coherent spin control in recent years [8,29,30,36]. Also tunnel

couplings between donor-bound and gate-defined spin qubits

were shown recently [37,38].

The organization of the paper is as follows. Section II

introduces the mathematical descriptions of the single-spin

qubit, the STQ, and the exchange-only qubit. Section III

derives the operation sequences to entangle QD qubits of

different qubit encodings. Section IV discusses the limitations

of these operations and describes how quantum information is

converted between different qubits. Finally, the results of the

paper are summarized.

II. QUBIT DEFINITIONS

A. Single-spin qubit

A single spin defines a qubit using the states |0〉 = |↑〉
and |1〉 = |↓〉 [3]. Universal qubit control is realized when a

magnetic field can be tilted to two different directions. The

control mechanisms to manipulate spins are magnetic field

pulses [9,39], moving spins in static magnetic fields with

spin-orbit interactions [40], and driving spins through areas

of different magnetic fields [6,41,42]. The standard operating

schemes have in common that microwave control pulses enable

Rabi-like gates [43]. Without further discussing the exact

mechanism, it is assumed here that the magnetic field direction

can be rotated to the z and x directions to generate rotations

around the z and x axes of the Bloch sphere. These single-qubit

gates are labeled Zφ = e−i2π
φ

2
σz and Xφ = e−i2π

φ

2
σx , where

σz = |↑〉〈↑| − |↓〉〈↓| and σx = |↑〉〈↓| + |↓〉〈↑| are the Pauli

operators. The phase accumulation φ = Ezt/h (φ = Ex t/h)

is caused by the Zeeman energy Ez = gµBBz (Ex = gµBBx)

of the magnetic field in the z direction (x direction).1

B. Singlet-triplet qubit

STQs are coded using the sz = 0 spin subspace of a

two-electron DQD [4]. QD1 and QD2 label the individual QDs

of the DQD. Ideally, the electrons are spatially separated, and

each QD is occupied with one electron. The logical qubit

states are defined by |0〉 = |↑↓〉 and |1〉 = |↓↑〉, where the

first entry labels the electron at QD1, and the second entry

labels the electron at QD2. Single-qubit control is realized

using a magnetic field gradient between the QDs, corre-

sponding to energy differences (�Ez/2)(σz,1 − σz,2), with

�Ez = (Ez,1 − Ez,2)/2, and the exchange interaction between

the QD electrons (J12/4)(σ 1 · σ 2 − 1). σ i = (σx,i,σy,i,σz,i) is

the vector of Pauli matrices at QDi .

�Ez is usually static in experiments, but J12 can be tuned

within subnanoseconds by controlling the tunnel coupling or

the potential difference of the QDs [44]. The magnetic field

gradient generates rotations around the z axis of the Bloch

sphere Zφ = e−i2π
φ

4
(σz,1−σz,2), with φ = 2�Ezt/h, and rota-

tions around the x axis are caused by the exchange interaction

Xφ = e−i2π
φ

4
(σ 1·σ 2−1), with φ = J12t/h. To reduce the leakage

probability, experiments are always done at global magnetic

fields (Ez/2)(σz,1 + σz,2), with Ez = (Ez,1 + Ez,2)/2, that lift

the degeneracy between the leakage states {|↑↑〉,|↓↓〉} and the

computational subspace {|0〉,|1〉}.

C. Exchange-only qubit

The exchange-only qubit is coded using the S = 1
2
, sz =

1
2

subspace of three electrons [5]. The encoding of the

exchange-only qubit in a subspace of the three-spin-1/2

Hilbert space (the subspace encoding) is strictly required for

the operation sequences that are derived in this paper [45].

An alternative exchange-only qubit encoding (the subsystem

encoding) equally permits the qubit initialization to the S = 1
2
,

sz = 1
2
, and S = 1

2
, sz = − 1

2
spin subspaces. In any case,

working with the subspace encoding only requires a proper

initialization routine. A strong, global magnetic field eases the

state initialization because then the S = 1
2
, sz = 1

2
, and S = 1

2
,

sz = − 1
2

spin subspaces have different energies. Practically,

one is always able to initialize a singlet for a doubly occupied

QD, and the ground-state spin configuration for a singly-

occupied QD.

The three singly-occupied QDs are labeled by QD1,

QD2, and QD3. The qubit states are defined by

|0〉 = 1√
2
(|↑↑↓〉 − |↓↑↑〉) and |1〉 = 1√

6
(|↑↑↓〉 + |↓↑↑〉) −√

2
3
|↑↓↑〉, with the spin labels |σQD1

,σQD2
,σQD3

〉. The sum of

the exchange interactions (J/4)[(σ1 · σ2 − 1) + (σ2 · σ3 − 1)],

with J = (J12 + J23)/2, and their difference (�J/4)

[(σ1 · σ2 − 1) − (σ2 · σ3 − 1)], with �J = (J12 − J23)/2, pro-

vide universal control of the subspace {|0〉,|1〉}. J causes

a rotation around the z axis of the Bloch sphere Zφ =

1In contrast to Ref. [57], all the phase accumulations are given in

multiples of 2π .
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FIG. 1. (Color online) Entangling operation between a single-

spin qubit and a STQ. (a) QD1 defines a single-spin qubit with the

qubit levels {|0L〉,|1L〉}; QD2 and QD3 define a STQ with the qubit

levels {|0R〉,|1R〉}. A weak tunnel coupling between QD1 and QD2

couples the single-spin qubit and the STQ. (b) Sequence to create a

CPHASE between a single-spin qubit (coded on QD1) and a STQ

(coded on QD2 and QD3). ZL
φ and ZR

φ are the phase gates of the qubits

L and R. UA
φ,ψ is defined in Eq. (2).

e−i2π
φ

4
[(σ1·σ2−1)+(σ2·σ3−1)], with φ = J t/h, and �J causes a

rotation around the x axis Xφ = e
−i2π

φ

4
√

3
[(σ1·σ2−1)−(σ2·σ3−1)]

,

with φ =
√

3�Jt/h. In typical qubit manipulation protocols,

J is constant and large, while �J is rapidly driven around

zero [17,18].

III. INTERFACES BETWEEN SPIN QUBITS

This section derives gate sequences that interconnect all

the three kinds of coded qubits using interqubit exchange

interactions. The normal parameters of experiments are used

for gate-defined QDs in GaAs [1] and Si [2]: all manipulations

are done with a global magnetic field Ez. Local magnetic

field variations are only permitted for the QDs of STQs, and

these variations are parallel to the global magnetic field. Also

their magnitudes are much smaller than Ez. All exchange

interactions can be tuned instantaneously, and the interqubit

exchange interactions can be reduced to zero. These operation

principles are idealized, and their limitations will be further

discussed in Sec. IV. The exchange interactions between the

QDs of the STQ are restricted to magnitudes of the order of

the local magnetic field variations; otherwise, charge noise

strongly couples to STQs. The TQD is always operated near

its optimal operation point, where J is large and �J is small.

A. Single-spin qubit and singlet-triplet qubit

Figure 1(a) shows a trio of singly-occupied QDs that

encodes a single-spin qubit and a STQ. QD1 defines the single-

spin qubit, with the qubit levels {|0L〉,|1L〉}. QD2 and QD3

define the STQ, where the qubit levels are called {|0R〉,|1R〉}.
A general Hamiltonian in this setup is

H
A =

J12

4
(σ1 · σ2 − 1) +

Ez

2
(σz,1 + σz,2 + σz,3)

+
Ẽz,2

2
σz,2 +

Ẽz,3

2
σz,3. (1)

QD1 and QD2 are coupled by the exchange coupling J12 that

is described by the first term in Eq. (1). The second term

describes the global magnetic field Ez, and the last two terms

are the deviations of the local magnetic fields at QD2 and

QD3 from Ez. The exchange interaction between QD2 and

QD3, (J23/4)(σ2 · σ3 − 1), is neglected in Eq. (1) because J23

is reduced to zero (or J23 is much smaller than Ẽz,2 − Ẽz,3).

To construct entangling operations, (Ez/2)(σz,1 + σz,2 +
σz,3) and (Ẽz,3/2)σz,3 can be neglected because these terms

commute with the remaining parts of Eq. (1), and they generate

only irrelevant phases. The relevant time evolution is described

by

U
A
φ,ψ = e−i2π[

φ

4
(σ1·σ2−1)+ ψ

2
σz,2], (2)

with φ = J12t/h and ψ = Ẽz,2t/h. For this gate operation

(and for all the following entangling operations) the magnitude

of the interqubit exchange interaction J12 can be prepared to

a specific value, and the evolution time t can be adjusted

properly. Even though Ẽz,2 is fixed at the beginning of an

experiment, still all values of φ and ψ can be realized.

Only the states in the subspace {|0L0R〉,|0L1R〉,|1L0R〉,
|1L1R〉,|↓↑↑〉,|↑↓↓〉} are coupled in Eq. (2). There is no

evolution from computational states to leakage states for√
φ2 + ψ2 = Z. An entangling operation that is, up to local

unitaries, equivalent to the CPHASE operation is realized for

φ = Z + 1
2
. One can used, e.g., UA

1/2,
√

3/2
. A CPHASE in the

basis {|0L0R〉,|0L1R〉,|1L0R〉,|1L1R〉} is [see Fig. 1(b)]

ZL

(1−
√

3)/4
ZR

(1−3
√

3)/4
U

A

1/2,
√

3/2
= e−i π

2 CPHASE. (3)

Another possible entangling gate is mentioned briefly.

Only the states {|0L0R〉,|0L1R〉,|1L0R〉,|1L1R〉} are coupled

significantly in the parameter regime Ez ≫ Ẽz,2 + Ẽz,3 ≫
J12. The leakage transitions to the states {|↓↑↑〉,|↑↓↓〉} are

very slow because these states are unfavored energetically.

One can derive from Eq. (1) an effective interaction on the

computational subspace

Ez

2
[|0L〉〈0L| − |1L〉〈1L|]

+
Ẽz,2 − Ẽz,3

2
[|0R〉〈0R| − |1R〉〈1R|]

+
J12

4
[|0L〉〈0L| − |1L〉〈1L|][|0R〉〈0R| − |1R〉〈1R|] (4)

that is entangling. The problem is that the gate operation time

is limited by the condition Ẽz,2 + Ẽz,3 ≫ J12, which will make

such entangling gates too slow for high-fidelity operations.

B. Single-spin qubit and exchange-only qubit

Figure 2(a) shows a quartet of singly occupied QDs that

encodes a single-spin qubit (QD1; qubit states {|0L〉,|1L〉}) and

an exchange-only qubit (QD2-QD4; qubit states {|0R〉,|1R〉}).
A general interaction in this setup is

H
B =

J12

4
(σ1 · σ2 − 1) +

Ez

2
(σz,1 + σz,2 + σz,3 + σz,4)

+
J

4
[(σ2 · σ3 − 1) + (σ3 · σ4 − 1)]. (5)
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FIG. 2. (Color online) Entangling operation between a single-

spin qubit and an exchange-only qubit. (a) QD1 defines a single-

spin qubit with the qubit levels {|0L〉,|1L〉}; QD2-QD4 define an

exchange-only qubit with the qubit levels {|0R〉,|1R〉}. A weak tunnel

coupling between QD1 and QD2 couples the single-spin qubit and the

exchange-only qubit. (b) Sequence to create a CPHASE between a

single-spin qubit (coded on QD1) and an exchange-only qubit (coded

on QD2-QD4). ZL
φ and ZR

φ are the phase gates of the qubits L and R.

UB
φ is defined in Eq. (8).

The first term in Eq. (5) is the exchange coupling between

QD1 and QD2. The second term is the global magnetic

field, and the third term describes the exchange couplings

of the exchange-only qubit.

(Ez/2)(σz,1 + σz,2 + σz,3 + σz,4) commutes with the re-

maining parts of Eq. (5), and this term causes only an irrelevant

time evolution of the single-spin qubit. The relevant time

evolution through Eq. (5) is

U
B
φ,ψ = e−i2π{ φ

4
(σ1·σ2−1)+ ψ

4
[(σ2·σ3−1)+(σ3·σ4−1)]}, (6)

with φ = J12t/h and ψ = J t/h. There are exact entangling

operations between a single-spin qubit and an exchange-

only qubit that use Eq. (6). However, these sequences are

complicated and involve many operation steps.2

Simpler entangling operations can be constructed for

J ≫ J12. The computational subspace is part of the four-spin

subspaces S = 0, sz = 0 and S = 1, sz = 1,0, which together

have eight dimensions [46]. Because the Hamiltonian

in Eq. (5) preserves the spin quantum numbers, it is

sufficient to describe the time evolution only in the four-spin

subspaces S = 0, sz = 0 and S = 1, sz = 1,0 that are

spanned by {|0L0R〉,|0L1R〉,|1L0R〉,|l1〉,|1L1R〉,|l2〉,|l3〉,|l4〉},
with |l1〉 = |0L〉|u−1/2〉, |l2〉 = |0L〉|v−1/2〉, |l〉3 ∝ |0L〉
|Q−1/2〉 − |1L〉|Q1/2〉, and |l〉4 ∝

√
3|1L〉|Q3/2〉 − |0L〉|Q1/2〉.

The states |u−1/2〉 = 1√
2
(|↑↓↓〉 − |↓↓↑〉) and |v−1/2〉 =

1√
6
(|↑↓↓〉 + |↓↓↑〉) −

√
2
3
|↓↑↓〉 span the S = 1

2
, sz = − 1

2

spin subspace of three electrons; |Q3/2〉 = |↑↑↑〉,
|Q1/2〉 ∝ |↑↑↓〉 + |↑↓↑〉 + |↓↑↑〉, |Q−1/2〉 ∝ |↓↓↑〉 +
|↓↑↓〉 + |↑↓↓〉, and |Q−3/2〉 = |↓↓↓〉 are the S = 3

2

quadruplet states of three spins. The spin labels correspond to

|σQD2
,σQD3

,σQD4
〉 in these state definitions.

The projection of Eq. (5) to the given basis is

H
B =




Ez − J
2

− J12

4
J12

4
√

3
− J12√

6
J12

4
√

3
Ez − 3J

2
− J12

12
J12

3
√

2

− J
2

− J12

4
0 − J12

4
√

3
− J12

2
√

3

J12

2
√

3

0 − J
2

− J12

4
J12

2
√

3

J12

4
√

3

J12

2
√

3

− J12

4
√

3

J12

2
√

3
− 3J

2
− 5J12

12
− J12

3
− J12

6

− J12

2
√

3

J12

4
√

3
− J12

3
− 3J

2
− 5J12

12
J12

6

J12

2
√

3

J12

2
√

3
− J12

6
J12

6
− 2J12

3

− J12√
6

J12

3
√

2
Ez − 2J12

3




. (7)

It is sufficient to consider the time evolution in the subspaces

of equal energies that are defined by Ez and J . The borders

in the matrix of Eq. (7) indicate these subspaces. J12 couples

these subspaces, but for Ez,J ≫ J12 these processes can be

neglected because the transition amplitudes are much smaller

than the energy differences.

After neglecting all the entries outside of the marked

subspaces in Eq. (7), also the time evolutions of Ez

2We found operation sequences to create entangling operations with

a numerical search algorithm, similar to the description in Ref. [19].

An operation sequence that is equivalent to a CPHASE is

U
B
φ1,φ2

XR
φ3
U

B
φ1,φ2

ZL
1/2XR

φ4
U

B
φ1,φ2

XR
φ3
U

B
φ1,φ2

,

with φ1 = 0.195613200942698, φ2 = 0.2178346646839128, φ3 =
0.7362256575556158, and φ4 = 0.735072280195903.

and J factor because they commute with the remain-

ing entries. The global magnetic field (Ez/2)(σz,1 +
σz,2 + σz,3 + σz,4) ≃ (Ez/2)(|0L〉〈0L| − |1L〉〈1L|) and the

exchange interaction (J/4)[(σ2 · σ3 − 1) + (σ3 · σ4 − 1)] ≃
(J/2)(|0R〉〈0R| − |1R〉〈1R|) cause single-qubit time evolutions

that will be neglected in the following [note that these

approximations require the previous assumptions where the

terms outside of the marked regions in Eq. (7) are ne-

glected]. Equation (6) can then be simplified on the subspace

{|0L0R〉,|0L1R〉,|1L0R〉,|l1〉,|1L1R〉,|l2〉} to

U
B
φ ≈ e

−i2πφdiag{− 1
4
,− 1

12
,(
− 1

4
0

0 − 1
4

),(
− 5

12
− 1

3

− 1
3

− 5
12

)}
. (8)

diag{a,b, . . . } describes the matrix with the diagonal entries

a, b, . . . , and φ = J12t/h.

A single time evolution under Eq. (8) is never entan-

gling because the criterion to prevent leakage only permits
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FIG. 3. (Color online) Entangling operations between a STQ and

an exchange-only qubit. QD1 and QD2 define a STQ with the qubit

levels {|0L〉,|1L〉}; QD3-QD5 define an exchange-only qubit with the

qubit levels {|0R〉,|1R〉}. A weak tunnel coupling between QD2 and

QD3 couples the STQ and the exchange-only qubit. (b) and (c)

Sequences to create a CPHASE between a STQ (coded on QD1 and

QD2) and an exchange-only qubit (coded on QD3-QD5). ZL
φ and ZR

φ

are the phase gates of the qubits L and R. U
C1
φ,ψ and U

C2
φ,ψ are defined

in Eqs. (12) and (16). The CPHASE gate is abbreviated as CZ, and

HL is the Hadamard gate for qubit L.

single-qubit gates. The two-step sequence UB
φ ZL

1/2U
B
φ is

equivalent to a CPHASE gate for φ = 3
4

+ 3
2
Z. A CPHASE

operation in the basis {|0L0R〉,|0L1R〉,|1L0R〉,|1L1R〉} is created

by [see Fig. 2(b)]:

ZL
1/2ZR

1/4U
B
3/4ZL

1/2U
B
3/4 = CPHASE. (9)

Note that the implicit single-qubit phase evolutions through

Ez and J , that are neglected in Eq. (8), need to be included in

ZL
1/2 and ZR

1/4.

C. Singlet-triplet qubit and exchange-only qubit

A quintet of singly-occupied QDs, as shown in Fig. 3(a),

defines a STQ (QD1-QD2; qubit states {|0L〉,|1L〉}) and an

exchange-only qubit (QD3-QD5; qubit states {|0R〉,|1R〉}). A

possible interaction in this setup is

H
C1 =

J

4
[(σ3 · σ4 − 1) + (σ4 · σ5 − 1)]

+
J23

4
(σ 2 · σ 3 − 1) +

Ẽz,2

2
σz,2

+
Ez

2
(σz,1 + σz,2 + σz,3 + σz,4 + σz,5). (10)

The first term in Eq. (10) describes the single-qubit interaction

of the exchange-only qubit for J34 = J45, with the abbrevi-

ation J = (J34 + J45)/2. The second term is the exchange

interaction between QD2 and QD3. A global magnetic field

across all five QDs, Ez, is represented by the last term.

Ẽz,2 is a small deviation of the local magnetic field at QD2

from the global magnetic field. Note that a possible deviation

of the magnetic field at QD1, Ẽz,1, is irrelevant when the

exchange interaction between QD1 and QD2 is reduced to

zero. Ẽz,1 would only cause single-qubit evolutions of the

STQ. The exchange interaction between QD1 and QD2, J12,

is absent in Eq. (10) because it is reduced to zero or to values

much smaller than the magnetic field difference between these

QDs.

The time evolution under Eq. (10) can be used to construct

an entangling operation between the STQ and the exchange-

only qubit. Similar to the discussion in the previous section,

Ez and J are much larger than Ẽz,2 and J23. Therefore the

qubit time evolution can be described using only the five-spin

subspaces S = 1
2
, sz = 1

2
and S = 3

2
, sz = 1

2
that have together

nine dimensions.

For Ez,J ≫ Ẽz,2,J23, only the states |m1〉 = |T+〉|u−1/2〉
and |m2〉 = |T+〉|v−1/2〉 coupled significantly to the com-

putational subspace through Eq. (10). These states

are eigenstates of (J/4)[(σ3 · σ4 − 1) + (σ4 · σ5 − 1)], and

they have identical energies as the qubit states.

|u−1/2〉 and |v−1/2〉 span the S = 1
2
, sz = − 1

2
sub-

space of the spins at QD2-QD4 (using the definitions

from Sec. III B). |m3〉 =
√

1
2
|T−〉|Q3/2〉 −

√
1
3
|T0〉|Q1/2〉 +

√
1
6
|T+〉|Q−1/2〉, |m4〉 =

√
2
5
|T−〉|Q3/2〉 +

√
1

15
|T0〉|Q1/2〉 −

√
8
15

|T+〉|Q−1/2〉, and |m5〉 = |S〉|Q3/2〉 have different ener-

gies, and therefore these states can be neglected. |T+〉 = |↑↑〉,
|T0〉 ∝ |↑↓〉 + |↓↑〉, |T−〉 = |↓↓〉, and |S0〉 = |↑↓〉 − |↓↑〉 are

the usual triplet and singlet states at QD1-QD2. Projecting

Eq. (10) to {|0L0R〉,|1L0R〉,|m1〉,|0L1R〉,|1L1R〉,|m2〉} gives

H
C1 ≈




Ez−J−Ẽz,2

2
− J23

4
0 0 − J23

4
√

3
− J23

2
√

3

0
Ez−J+Ẽz,2

2
− J23

4
0 J23

4
√

3

0 0
Ez−J+Ẽz,2

2
− J23

4
J23

2
√

3

J23

4
√

3

− J23

4
√

3

J23

2
√

3

Ez−3J−Ẽz,2

2
− 5J23

12
0 − J23

3

J23

4
√

3
0

Ez−3J+Ẽz,2

2
− J23

12
0

− J23

2
√

3

J23

4
√

3
− J23

3
0

Ez−3J+Ẽz,2

2
− 5J23

12




. (11)
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Equation (11) contains two subspaces of virtually identical

energies, as marked by the borders in the matrix. All the terms

that couple these subspaces can be neglected.

After neglecting the block off diagonal entries in

Eq. (11), also the time evolutions of Ez and J factor

because they commute with the remaining entries. The

time evolution through (J/4)[(σ3 · σ4 − 1) + (σ4 · σ5 − 1)] ≃
(J/2)(|0R〉〈0R| − |1R〉〈1R|) causes only single-qubit time evo-

lutions of the triple-QD qubit, and Ez causes global phase

evolutions. The remaining time evolution is

U
C1

φ,ψ ≈ e−i2π(φm1+ ψ

2
m2),

m1 = − diag





1

4
,
1

4
,
1

4
,




5
12

0 1
3

0 1
12

0

1
3

0 5
12








, (12)

m2 =diag{−1,1,1,−1,1,1},
with φ = J23t/h and ψ = Ẽz,2t/h.

Equation (12) causes no leakage for 1
3

√
4φ2 + 9ψ2 =

2Z + 1, and an entangling operation is realized for
1
6
(2φ − 3ψ) = Z. Alternatively, it is also possible to use

1
3

√
4φ2 + 9ψ2 = 2Z and 1

6
(2φ − 3ψ) = Z + 1

2
. For example,

the entangling operation U
C1

3/(2
√

2),1/
√

2
gives a CPHASE in the

basis {|0L0R〉,|0L1R〉,|1L0R〉,|1L1R〉} using [see Fig. 3(b)]

ZL

1/
√

2
ZR

(4+
√

2)/8
U

C1

3/(2
√

2),1/
√

2
= eiπ

√
2−3
2 CPHASE. (13)

Note that in the construction of Eq. (13), it was assumed

that J12 is turned to zero during the entangling operation. Small

values of J12 can only be tolerated if they are much smaller

than Ẽz,2. An alternative gate can be constructed for large

J12. This case is probably unfavored because the influence

of charge noise increases with the exchange interactions. For

completeness, we still discuss this parameter regime. In this

case, Eq. (10) is modified to

H
C2 =

J12

4
(σ1 · σ2 − 1) +

J

4
[(σ3 · σ4 − 1) + (σ4 · σ5 − 1)]

+
�Ez

2
(σz,1 + σz,2) +

J23

4
(σ 2 · σ 3 − 1)

+
Ez

2
(σz,1 + σz,2 + σz,3 + σz,4 + σz,5). (14)

Equation (14) contains the exchange interactions J12, J23, and

J . Additionally, to a global magnetic field Ez, the sum of

the magnetic field variations at QD1 and QD2 are important

�Ez = (Ẽz,1 + Ẽz,2)/2. The magnetic field difference �Ez =
(Ẽz,1 − Ẽz,2)/2 can be neglected if it is much smaller than

J12. Using the equivalent arguments as before for Ez,J12,J ≫
�Ez,J23, the qubit time evolution is restricted to the subspace

{|T00R〉,|m1〉,|T01R〉,|m2〉,|S00R〉,|S01R〉}. Projecting Eq. (14)

to this basis gives

H
C2 ≈




Ez−J

2
− J23

4
0 − J23

2
√

6
− J23

4
√

3

0
Ez−J

2
+ �Ez − J23

4
J23

2
√

6

J23

4
√

3

J23

2
√

6
J23

2
√

6

Ez−3J

2
− J23

4
− J23

3
√

2
− J23

4
√

3
− J23

6

− J23

2
√

6

J23

4
√

3
− J23

3
√

2

Ez−3J

2
+ �Ez − 5J23

12
− J23

2
√

6
− J23

3
√

2

− J23

4
√

3
− J23

2
√

6

Ez−J

2
− J12 − J23

4

− J23

4
√

3

J23

2
√

6
− J23

6
− J23

3
√

2

Ez−3J

2
− J12 − J23

4




.

(15)

All the terms in Eq. (15) outside of the marked subspaces

are neglected for Ez,J12,J ≫ �Ez,J23. Neglecting the con-

tributions of Ez, J , and J12 [again these terms commute with

the remaining entries in Eq. (15), and they cause either global

phase evolutions, or single-qubit time evolutions] the effective

time evolution is

U
C2

φ,ψ ≈ e−i2π(φm1+ψm2),

m1 = −diag

{(
1
4

0

0 1
4

)
,

(
1
4

1

3
√

2
1

3
√

2

5
12

)
,
1

4
,
1

4

}
, (16)

m2 = diag{0,1,0,1,0,0},

with φ = J23t/h and ψ = �Ezt/h. The contributions of J12

and J are irrelevant in Eq. (15) because they dominantly

cause single-qubit time evolutions for Ez,J12,J ≫ �Ez,J23:

(J12/4)(σ 1 · σ 2 − 1) ≃ (J12/2)(|0L〉〈0L| − |1L〉〈1L|) and

(J/4)[(σ3 · σ4 − 1) + (σ4 · σ5 − 1)] ≃ (J/2)(|0R〉〈0R| −
|1R〉〈1R|). Also the phase evolution through Ez is neglected.

The time evolution in Eq. (16) causes no leakage for

1
2

√
φ2 − 4φψ

3
+ 4ψ2 = 2Z + 1, and an entangling operation is

realized for 1
12

(φ − 6ψ) = Z. Alternatively, it is also possible

to use 1
2

√
φ2 − 4φψ

3
+ 4ψ2 = 2Z and 1

12
(φ − 6ψ) = Z + 1

2
.

For example, the entangling operation U
C2

3/
√

2,1/(2
√

2)
gives

a CPHASE gate in the basis {|0L0R〉,|0L1R〉,|1L0R〉,|1L1R〉}
using [see Fig. 3(c)]

HLZR
1/2U

C2

3/
√

2,1/(2
√

2)
HL = eiπ

3(
√

2−2)
4 CPHASE, (17)

where H is the Hadamard gate.

IV. DISCUSSION AND CONCLUSION

It has been shown that the exchange interaction can be

used to entangle a pair of QD qubits for all the distinct qubit

encodings. Besides the single-qubit control, which has been

experimentally realized for all the described spin qubits, only
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exchange interactions between a pair of QDs of different QD

qubits are needed. With the flexibility of the spin qubit setup,

i.e., by keeping constant exchange interactions (for the STQ

or the exchange-only qubit) or allowing local magnetic field

variations (for the STQ), very short operation sequences can be

constructed to entangle QD qubits. To entangle a STQ with a

single-spin qubit or an exchange-only qubit, only one exchange

interaction is needed between QDs of the different qubit types.

To entangle a single-spin qubit and an exchange-only qubit, a

sequence of two interqubit exchange interactions is needed.

The constructions of the entangling operations in Secs. III B

and III C used a few approximations. It was assumed that

the exchange interaction between the QDs of the STQ, or

between the QDs of the exchange-only qubit are constantly

turned on, while their magnitudes are much larger than the

exchange interaction between the neighboring QDs of the dif-

ferent qubits. Figure 4 compares the time evolution of the

Hamiltonians without any approximations to the ideal time

evolutions. It is shown that the interqubit exchange interactions

only need to be by one order of magnitude smaller than the

exchange interactions within a qubit to reduce the effective

gate errors below 1%. These gate errors are sufficient for

quantum computation with standard quantum error correction

protocols [33,47,48].

The advantage of exchange-based entangling operations is

the controllability of the interaction mechanism. The exchange

interaction depends on the tunnel coupling between distant

QDs and their chemical potentials. It has been shown that

exchange interactions can be tuned rapidly [44]. Even though

the interqubit exchange interactions need to be weak, the

time scales of the entangling gates can still reach tens of

nanoseconds. The global magnetic field Ez can be large in

experiments; the Zeeman energy |gµBBz| reaches values of

several µeV for external magnetic fields above 100mT in GaAs

and Si (note that the absolute value of the g factor in Si is more

than four times larger than in GaAs) [1,2]. The preparation of

local magnetic field variations of the order of B̃z,i = 10 mT

are possible for STQs (|gµBB̃z,i | � 1 µeV) [12,13]. The

exchange interactions can be tuned to several µeV, while

high-fidelity operations require exchange interactions below

1 µeV due to charge noise [49,51]. An exception is the

constant exchange interaction J of the exchange-only qubit

that is typically by one order of magnitude larger because then

the exchange-only qubit is still well protected from charge

noise at an optimal operation point [17,18]. Our gates require

magnitudes of the interqubit exchange interactions that are

similar to the magnetic field gradient across the DQD of a

STQ (see Sec. III A), or magnitudes of the interqubit exchange

interactions that are by one order of magnitude smaller than

Ez and J (see Fig. 4, Secs. III B and III C). This means

that the entangling operations have limitations similar to the

standard single-qubit gate operations, e.g., Rabi control for

the single-spin qubit [6–10] or the exchange-only qubit [15,16]

require a driving amplitude (that determines the gate time) that

is much smaller than Ez or J . Using all these approximations

also for the two-qubit operation times, the gate times are still

comparable to the single-qubit operation times.

The limitations of the proposed entangling operations are

similar to existing gate schemes. Local magnetic [50] and

electric field [51] fluctuations are present in semiconductors.

FIG. 4. (Color online) Gate errors for the operation sequences

of Eqs. (9), (13), and (17). Only the operations UB
3/4, U

C1

3/(2
√

2),1/
√

2
,

and U
C2

3/
√

2,1/(2
√

2)
are analyzed. The gate errors are charac-

terized by the deviation of the entanglement fidelity F =
tr(ρRSU

−1
idealUrealρ

RSU
−1
realUideal) from 1. ρRS = |RS〉〈RS| is the max-

imally entangled state of two identical subspaces R and S, e.g.,

|RS〉 ∝ |0000〉 + |0110〉 + |1001〉 + |1111〉, and the time evolutions

Uideal and Ureal act only on S while R remains unchanged. (a) For UB
3/4

(blue curve) and U
C1

3/(2
√

2),1/
√

2
(red curve), the exchange interaction

of the exchange-only qubit J should be by more than one order of

magnitude larger than J12 to reduce the gate error below 1%. (b)

For U
C2

3/
√

2,1/(2
√

2)
, J12, and J should be large. The gate errors increase

for J12 = 3J/2, J12 = J , and J12 = J/2 (dashed lines) because of

degeneracies in the level spectrum.

Both mechanism cause low-frequency fluctuations of the

QD parameters. Since the magnetic field fluctuations are

created mainly by the hyperfine spins of the host’s nuclei,

these fluctuations are suppressed for QDs in nuclear-spin free

heterostructures. Natural Si contains already a substantially

lower number of isotopes with nuclear spins compared to

GaAs, and it is also possible to fabricate QDs in isotopically

purified Si that contain almost no isotopes that have nuclear

spins [52]. Charge noise is dominantly caused by impurities

in the sample, and it couples to the electric dipole moments of

qubits that are created by increasing the exchange interactions.

To prevent a large influence of charge noise, one usually limits

the magnitudes of the exchange interactions. Furthermore,
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a small amount of low-frequency noise can be tolerated in

experiments because it is possible to reduce its influence by

refocusing protocols [53,54].

In the end, the proposed gate operations are idealized

because they do not take into account finite rise times of the

exchange pulses, or a residual exchange coupling that cannot

be turned off. The modifications of exchange interactions

on subnanosecond time scales are well established [44].

For some gates of the paper, the exchange interactions of

STQs are reduced to zero, but it is sufficient to reduce them

below the level of the magnetic field gradients across the

DQDs. Being able to minimize the influence of interqubit

exchange is very important. We are convinced that the recent

experimental achievement of high amplitude control over

the tunnel coupling between QDs is very useful [55]. Also

preparation errors or misalignments of the local magnetic fields

are present in real experiments. Further numerical studies

can adjust the proposed gate sequences to the reality, and

a procedure similar to Ref. [56] should be able to derive

optimized gate sequences for high-fidelity gate operations.

Spin-orbit interactions are weak in typical QD materials like,

e.g., GaAs or Si [1,2], and they should have minor influence

on the proposed operation sequences.

Besides entangling different kinds of spin qubits, it might

also be useful to interchange quantum information between

them. Figure 5 shows operation sequences for SWAP oper-

ations that only rely on CPHASE and Hadamard gates (cf.

Ref. [57]). An unconditioned SWAP is realized using three

CPHASE gates; only two CPHASE gates are needed if the

state of a qubit should be transferred to another qubit that is

initially in |0〉.
Altogether, very efficient operation sequences have been

constructed to couple and interconvert different kinds of spin

qubits. These operation sequences can couple all the standard

qubit encodings in one, two, and three singly occupied QDs.

(a) × • H • H •

×
=

H Z H Z H Z H

(b) |ψ〉 × |0〉 |ψ〉 • H • H |0〉

|0〉 × |ψ〉
=

|0〉 H Z H Z |ψ〉

FIG. 5. Gate operations to interchange qubits using CPHASE

gates. (a) The unconditioned SWAP operation requires three

CPHASE gates together with Hadamard gates (H). (b) A simpler

SWAP sequence can be realized if one of the qubits is initialized to a

fixed state, e.g., |0〉. Then the SWAP operation with an arbitrary state

|ψ〉 requires only two CPHASE gates.

Only the established single-qubit manipulation protocols

are needed that have been successfully realized for all the

qubit encodings. Different qubits are coupled using exchange

interactions that are well controlled experimentally. With

the current efforts to build larger arrays of tunnel-coupled

QDs [58,59], the proposed operation sequences can be tested

directly. The interconversion of different spin qubits allows

to use all the advantages of the different QD setups in large

arrays of QDs. For example, it is known that few-electron

qubits couple stronger to cavities [17,23,24] or metallic

gates [60], while single-spin qubits have extremely long

coherence times [8,34]. Therefore the described operation

sequences are another useful ingredient on the way towards

quantum computation with large QD networks.

ACKNOWLEDGMENTS

We are grateful for support from the Alexander von

Humboldt foundation.

[1] R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and

L. M. K. Vandersypen, Spins in few-electron quantum dots,

Rev. Mod. Phys. 79, 1217 (2007).

[2] F. A. Zwanenburg, A. S. Dzurak, A. Morello, M. Y. Simmons,

L. C. L. Hollenberg, G. Klimeck, S. Rogge, S. N. Coppersmith,

and M. A. Eriksson, Silicon quantum electronics, Rev. Mod.

Phys. 85, 961 (2013).

[3] D. Loss and D. P. DiVincenzo, Quantum computation with

quantum dots, Phys. Rev. A 57, 120 (1998).

[4] J. Levy, Universal Quantum Computation with Spin-1/2 Pairs

and Heisenberg Exchange, Phys. Rev. Lett. 89, 147902 (2002).

[5] D. P. DiVincenzo, D. Bacon, J. Kempe, G. Burkard, and K. B.

Whaley, Universal quantum computation with the exchange

interaction, Nature (London) 408, 339 (2000).

[6] E. Kawakami, P. Scarlino, D. R. Ward, F. R. Braakman, D. E.

Savage, M. G. Lagally, M. Friesen, S. N. Coppersmith, M. A.

Eriksson, and L. M. K. Vandersypen, Electrical control of a long-

lived spin qubit in a Si/SiGe quantum dot, Nat. Nanotechnol. 9,

666 (2014).

[7] P. Scarlino, E. Kawakami, D. R. Ward, D. E. Savage, M. G.

Lagally, M. Friesen, S. N. Coppersmith, M. A. Eriksson, and

L. M. K. Vandersypen, Second Harmonic Coherent Driving of

a Spin Qubit in a Si/SiGe Quantum Dot, Phys. Rev. Lett. 115,

106802 (2015).

[8] J. J. Pla, K. Y. Tan, J. P. Dehollain, W. H. Lim, J. J. L. Morton,

D. N. Jamieson, A. S. Dzurak, and A. Morello, A single-atom

electron spin qubit in silicon, Nature (London) 489, 541 (2012).

[9] M. Veldhorst, J. C. C. Hwang, C. H. Yang, A. W. Leenstra, B.

de Ronde, J. P. Dehollain, J. T. Muhonen, F. E. Hudson, K. M.

Itoh, A. Morello, and A. S. Dzurak, An addressable quantum

dot qubit with fault-tolerant control-fidelity, Nat. Nanotechnol.

9, 981 (2014).

[10] M. Veldhorst, R. Ruskov, C. H. Yang, J. C. C. Hwang, F. E.
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