000256245 001__ 256245
000256245 005__ 20240610121230.0
000256245 0247_ $$2doi$$a10.1038/ncomms9610
000256245 0247_ $$2Handle$$a2128/9355
000256245 0247_ $$2WOS$$aWOS:000364934200012
000256245 0247_ $$2altmetric$$aaltmetric:4646855
000256245 0247_ $$2pmid$$apmid:26477940
000256245 037__ $$aFZJ-2015-06214
000256245 082__ $$a500
000256245 1001_ $$0P:(DE-HGF)0$$aBaeumer, Christoph$$b0$$eCorresponding author
000256245 245__ $$aSpectromicroscopic insights for rational design of redox-based memristive devices
000256245 260__ $$aLondon$$bNature Publishing Group$$c2015
000256245 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1445521961_1442
000256245 3367_ $$2DataCite$$aOutput Types/Journal article
000256245 3367_ $$00$$2EndNote$$aJournal Article
000256245 3367_ $$2BibTeX$$aARTICLE
000256245 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000256245 3367_ $$2DRIVER$$aarticle
000256245 520__ $$aThe demand for highly scalable, low-power devices for data storage and logic operations is strongly stimulating research into resistive switching as a novel concept for future non-volatile memory devices. To meet technological requirements, it is imperative to have a set of material design rules based on fundamental material physics, but deriving such rules is proving challenging. Here, we elucidate both switching mechanism and failure mechanism in the valence-change model material SrTiO3, and on this basis we derive a design rule for failure-resistant devices. Spectromicroscopy reveals that the resistance change during device operation and failure is indeed caused by nanoscale oxygen migration resulting in localized valence changes between Ti4+ and Ti3+. While fast reoxidation typically results in retention failure in SrTiO3, local phase separation within the switching filament stabilizes the retention. Mimicking this phase separation by intentionally introducing retention-stabilization layers with slow oxygen transport improves retention times considerably.
000256245 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000256245 588__ $$aDataset connected to CrossRef
000256245 7001_ $$0P:(DE-Juel1)159492$$aSchmitz, Christoph$$b1$$ufzj
000256245 7001_ $$0P:(DE-HGF)0$$aRamadan, Amr H. H.$$b2
000256245 7001_ $$0P:(DE-Juel1)145710$$aDu, Hongchu$$b3$$ufzj
000256245 7001_ $$0P:(DE-Juel1)145428$$aSkaja, Katharina$$b4$$ufzj
000256245 7001_ $$0P:(DE-Juel1)145012$$aFeyer, Vitaliy$$b5$$ufzj
000256245 7001_ $$0P:(DE-Juel1)164365$$aMüller, Philipp$$b6
000256245 7001_ $$0P:(DE-Juel1)158055$$aArndt, Benedikt$$b7$$ufzj
000256245 7001_ $$0P:(DE-Juel1)130736$$aJia, Chun-Lin$$b8$$ufzj
000256245 7001_ $$0P:(DE-Juel1)130824$$aMayer, Joachim$$b9$$ufzj
000256245 7001_ $$0P:(DE-HGF)0$$aDe Souza, Roger A.$$b10
000256245 7001_ $$0P:(DE-HGF)0$$aMichael Schneider, Claus$$b11
000256245 7001_ $$0P:(DE-HGF)0$$aWaser, Rainer$$b12
000256245 7001_ $$0P:(DE-Juel1)130620$$aDittmann, Regina$$b13$$ufzj
000256245 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/ncomms9610$$gVol. 6, p. 8610 -$$p8610 -$$tNature Communications$$v6$$x2041-1723$$y2015
000256245 8564_ $$uhttps://juser.fz-juelich.de/record/256245/files/ncomms9610.pdf$$yOpenAccess
000256245 8564_ $$uhttps://juser.fz-juelich.de/record/256245/files/ncomms9610.gif?subformat=icon$$xicon$$yOpenAccess
000256245 8564_ $$uhttps://juser.fz-juelich.de/record/256245/files/ncomms9610.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000256245 8564_ $$uhttps://juser.fz-juelich.de/record/256245/files/ncomms9610.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000256245 8564_ $$uhttps://juser.fz-juelich.de/record/256245/files/ncomms9610.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000256245 8564_ $$uhttps://juser.fz-juelich.de/record/256245/files/ncomms9610.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000256245 8767_ $$8182164OI$$92015-09-15$$d2015-10-08$$eAPC$$jZahlung erfolgt$$pNCOMMS-15-12511A
000256245 909CO $$ooai:juser.fz-juelich.de:256245$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000256245 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000256245 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159492$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000256245 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145710$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000256245 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145428$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000256245 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145012$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000256245 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158055$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000256245 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130736$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000256245 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130824$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000256245 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b11$$kFZJ
000256245 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b12$$kFZJ
000256245 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich GmbH$$b13$$kFZJ
000256245 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000256245 9141_ $$y2015
000256245 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2014
000256245 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000256245 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000256245 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000256245 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000256245 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000256245 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000256245 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000256245 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000256245 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000256245 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000256245 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000256245 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000256245 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNAT COMMUN : 2014
000256245 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000256245 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000256245 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000256245 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x1
000256245 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x2
000256245 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x3
000256245 9801_ $$aUNRESTRICTED
000256245 9801_ $$aFullTexts
000256245 980__ $$ajournal
000256245 980__ $$aVDB
000256245 980__ $$aUNRESTRICTED
000256245 980__ $$aI:(DE-Juel1)PGI-7-20110106
000256245 980__ $$aI:(DE-Juel1)PGI-6-20110106
000256245 980__ $$aI:(DE-Juel1)PGI-5-20110106
000256245 980__ $$aI:(DE-82)080009_20140620
000256245 980__ $$aAPC
000256245 981__ $$aI:(DE-Juel1)ER-C-1-20170209
000256245 981__ $$aI:(DE-Juel1)PGI-6-20110106
000256245 981__ $$aI:(DE-Juel1)PGI-5-20110106