Home > Workflow collections > Public records > Spectromicroscopic insights for rational design of redox-based memristive devices > print |
001 | 256245 | ||
005 | 20240610121230.0 | ||
024 | 7 | _ | |a 10.1038/ncomms9610 |2 doi |
024 | 7 | _ | |a 2128/9355 |2 Handle |
024 | 7 | _ | |a WOS:000364934200012 |2 WOS |
024 | 7 | _ | |a altmetric:4646855 |2 altmetric |
024 | 7 | _ | |a pmid:26477940 |2 pmid |
037 | _ | _ | |a FZJ-2015-06214 |
082 | _ | _ | |a 500 |
100 | 1 | _ | |a Baeumer, Christoph |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Spectromicroscopic insights for rational design of redox-based memristive devices |
260 | _ | _ | |a London |c 2015 |b Nature Publishing Group |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1445521961_1442 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
520 | _ | _ | |a The demand for highly scalable, low-power devices for data storage and logic operations is strongly stimulating research into resistive switching as a novel concept for future non-volatile memory devices. To meet technological requirements, it is imperative to have a set of material design rules based on fundamental material physics, but deriving such rules is proving challenging. Here, we elucidate both switching mechanism and failure mechanism in the valence-change model material SrTiO3, and on this basis we derive a design rule for failure-resistant devices. Spectromicroscopy reveals that the resistance change during device operation and failure is indeed caused by nanoscale oxygen migration resulting in localized valence changes between Ti4+ and Ti3+. While fast reoxidation typically results in retention failure in SrTiO3, local phase separation within the switching filament stabilizes the retention. Mimicking this phase separation by intentionally introducing retention-stabilization layers with slow oxygen transport improves retention times considerably. |
536 | _ | _ | |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521) |0 G:(DE-HGF)POF3-521 |c POF3-521 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Schmitz, Christoph |0 P:(DE-Juel1)159492 |b 1 |u fzj |
700 | 1 | _ | |a Ramadan, Amr H. H. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Du, Hongchu |0 P:(DE-Juel1)145710 |b 3 |u fzj |
700 | 1 | _ | |a Skaja, Katharina |0 P:(DE-Juel1)145428 |b 4 |u fzj |
700 | 1 | _ | |a Feyer, Vitaliy |0 P:(DE-Juel1)145012 |b 5 |u fzj |
700 | 1 | _ | |a Müller, Philipp |0 P:(DE-Juel1)164365 |b 6 |
700 | 1 | _ | |a Arndt, Benedikt |0 P:(DE-Juel1)158055 |b 7 |u fzj |
700 | 1 | _ | |a Jia, Chun-Lin |0 P:(DE-Juel1)130736 |b 8 |u fzj |
700 | 1 | _ | |a Mayer, Joachim |0 P:(DE-Juel1)130824 |b 9 |u fzj |
700 | 1 | _ | |a De Souza, Roger A. |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Michael Schneider, Claus |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Waser, Rainer |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Dittmann, Regina |0 P:(DE-Juel1)130620 |b 13 |u fzj |
773 | _ | _ | |a 10.1038/ncomms9610 |g Vol. 6, p. 8610 - |0 PERI:(DE-600)2553671-0 |p 8610 - |t Nature Communications |v 6 |y 2015 |x 2041-1723 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/256245/files/ncomms9610.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/256245/files/ncomms9610.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/256245/files/ncomms9610.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/256245/files/ncomms9610.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/256245/files/ncomms9610.jpg?subformat=icon-640 |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/256245/files/ncomms9610.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:256245 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)159492 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)145710 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)145428 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)145012 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)158055 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)130736 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)130824 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 12 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 13 |6 P:(DE-Juel1)130620 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-521 |2 G:(DE-HGF)POF3-500 |v Controlling Electron Charge-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2015 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT COMMUN : 2014 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b NAT COMMUN : 2014 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-7-20110106 |k PGI-7 |l Elektronische Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-6-20110106 |k PGI-6 |l Elektronische Eigenschaften |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-5-20110106 |k PGI-5 |l Mikrostrukturforschung |x 2 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 3 |
980 | 1 | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-7-20110106 |
980 | _ | _ | |a I:(DE-Juel1)PGI-6-20110106 |
980 | _ | _ | |a I:(DE-Juel1)PGI-5-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a APC |
981 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
981 | _ | _ | |a I:(DE-Juel1)PGI-6-20110106 |
981 | _ | _ | |a I:(DE-Juel1)PGI-5-20110106 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|