000256251 001__ 256251
000256251 005__ 20240712112833.0
000256251 0247_ $$2doi$$a10.1016/j.actamat.2015.04.017
000256251 0247_ $$2ISSN$$a1359-6454
000256251 0247_ $$2ISSN$$a1873-2453
000256251 0247_ $$2WOS$$aWOS:000357143500029
000256251 037__ $$aFZJ-2015-06218
000256251 041__ $$aEnglish
000256251 082__ $$a670
000256251 1001_ $$0P:(DE-HGF)0$$aHinterstein, M.$$b0$$eCorresponding author
000256251 245__ $$aInterplay of strain mechanisms in morphotropic piezoceramics
000256251 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2015
000256251 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1445586489_10785
000256251 3367_ $$2DataCite$$aOutput Types/Journal article
000256251 3367_ $$00$$2EndNote$$aJournal Article
000256251 3367_ $$2BibTeX$$aARTICLE
000256251 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000256251 3367_ $$2DRIVER$$aarticle
000256251 520__ $$aA large number of transducers, ultrasonic motors or actuators are based on lead zirconate titanate (PZT) piezoceramics, with compositions near the morphotropic phase boundary (MPB) where the relevant material properties approach their maximum. Since the best piezoelectric properties, in particular the highest recoverable strains, are observed for these MPB compositions with phase coexistences, a separate analysis of each phase is mandatory. Here we present a sophisticated method to correlate the macroscopic strain observations to mechanisms on the atomic scale. The technique allows a quantification of all contributing strain mechanisms such as lattice strain, domain switching and phase transition for each phase. These results indicate that the major strain contribution is of structural instead of microstructural origin and the electric field induced phase transition occurs through polarisation rotation. Such a mechanism could be generalised in other MPB piezoceramics and will be useful to design and optimise the next generation of high performance piezoelectric materials.
000256251 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000256251 588__ $$aDataset connected to CrossRef
000256251 7001_ $$0P:(DE-HGF)0$$aHoelzel, M.$$b1
000256251 7001_ $$0P:(DE-HGF)0$$aRouquette, J.$$b2
000256251 7001_ $$0P:(DE-HGF)0$$aHaines, J.$$b3
000256251 7001_ $$0P:(DE-HGF)0$$aGlaum, J.$$b4
000256251 7001_ $$0P:(DE-Juel1)157700$$aKungl, H.$$b5$$ufzj
000256251 7001_ $$0P:(DE-HGF)0$$aHoffman, M.$$b6
000256251 773__ $$0PERI:(DE-600)2014621-8$$a10.1016/j.actamat.2015.04.017$$gVol. 94, p. 319 - 327$$p319 - 327$$tActa materialia$$v94$$x1359-6454$$y2015
000256251 8564_ $$uhttps://juser.fz-juelich.de/record/256251/files/1-s2.0-S1359645415002591-main.pdf$$yRestricted
000256251 8564_ $$uhttps://juser.fz-juelich.de/record/256251/files/1-s2.0-S1359645415002591-main.gif?subformat=icon$$xicon$$yRestricted
000256251 8564_ $$uhttps://juser.fz-juelich.de/record/256251/files/1-s2.0-S1359645415002591-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000256251 8564_ $$uhttps://juser.fz-juelich.de/record/256251/files/1-s2.0-S1359645415002591-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000256251 8564_ $$uhttps://juser.fz-juelich.de/record/256251/files/1-s2.0-S1359645415002591-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000256251 8564_ $$uhttps://juser.fz-juelich.de/record/256251/files/1-s2.0-S1359645415002591-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000256251 909CO $$ooai:juser.fz-juelich.de:256251$$pVDB
000256251 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000256251 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000256251 9141_ $$y2015
000256251 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACTA MATER : 2014
000256251 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000256251 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000256251 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000256251 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000256251 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000256251 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000256251 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000256251 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000256251 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000256251 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer review
000256251 920__ $$lyes
000256251 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000256251 980__ $$ajournal
000256251 980__ $$aVDB
000256251 980__ $$aI:(DE-Juel1)IEK-9-20110218
000256251 980__ $$aUNRESTRICTED
000256251 981__ $$aI:(DE-Juel1)IET-1-20110218