000256251 001__ 256251 000256251 005__ 20240712112833.0 000256251 0247_ $$2doi$$a10.1016/j.actamat.2015.04.017 000256251 0247_ $$2ISSN$$a1359-6454 000256251 0247_ $$2ISSN$$a1873-2453 000256251 0247_ $$2WOS$$aWOS:000357143500029 000256251 037__ $$aFZJ-2015-06218 000256251 041__ $$aEnglish 000256251 082__ $$a670 000256251 1001_ $$0P:(DE-HGF)0$$aHinterstein, M.$$b0$$eCorresponding author 000256251 245__ $$aInterplay of strain mechanisms in morphotropic piezoceramics 000256251 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2015 000256251 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1445586489_10785 000256251 3367_ $$2DataCite$$aOutput Types/Journal article 000256251 3367_ $$00$$2EndNote$$aJournal Article 000256251 3367_ $$2BibTeX$$aARTICLE 000256251 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000256251 3367_ $$2DRIVER$$aarticle 000256251 520__ $$aA large number of transducers, ultrasonic motors or actuators are based on lead zirconate titanate (PZT) piezoceramics, with compositions near the morphotropic phase boundary (MPB) where the relevant material properties approach their maximum. Since the best piezoelectric properties, in particular the highest recoverable strains, are observed for these MPB compositions with phase coexistences, a separate analysis of each phase is mandatory. Here we present a sophisticated method to correlate the macroscopic strain observations to mechanisms on the atomic scale. The technique allows a quantification of all contributing strain mechanisms such as lattice strain, domain switching and phase transition for each phase. These results indicate that the major strain contribution is of structural instead of microstructural origin and the electric field induced phase transition occurs through polarisation rotation. Such a mechanism could be generalised in other MPB piezoceramics and will be useful to design and optimise the next generation of high performance piezoelectric materials. 000256251 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0 000256251 588__ $$aDataset connected to CrossRef 000256251 7001_ $$0P:(DE-HGF)0$$aHoelzel, M.$$b1 000256251 7001_ $$0P:(DE-HGF)0$$aRouquette, J.$$b2 000256251 7001_ $$0P:(DE-HGF)0$$aHaines, J.$$b3 000256251 7001_ $$0P:(DE-HGF)0$$aGlaum, J.$$b4 000256251 7001_ $$0P:(DE-Juel1)157700$$aKungl, H.$$b5$$ufzj 000256251 7001_ $$0P:(DE-HGF)0$$aHoffman, M.$$b6 000256251 773__ $$0PERI:(DE-600)2014621-8$$a10.1016/j.actamat.2015.04.017$$gVol. 94, p. 319 - 327$$p319 - 327$$tActa materialia$$v94$$x1359-6454$$y2015 000256251 8564_ $$uhttps://juser.fz-juelich.de/record/256251/files/1-s2.0-S1359645415002591-main.pdf$$yRestricted 000256251 8564_ $$uhttps://juser.fz-juelich.de/record/256251/files/1-s2.0-S1359645415002591-main.gif?subformat=icon$$xicon$$yRestricted 000256251 8564_ $$uhttps://juser.fz-juelich.de/record/256251/files/1-s2.0-S1359645415002591-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000256251 8564_ $$uhttps://juser.fz-juelich.de/record/256251/files/1-s2.0-S1359645415002591-main.jpg?subformat=icon-180$$xicon-180$$yRestricted 000256251 8564_ $$uhttps://juser.fz-juelich.de/record/256251/files/1-s2.0-S1359645415002591-main.jpg?subformat=icon-640$$xicon-640$$yRestricted 000256251 8564_ $$uhttps://juser.fz-juelich.de/record/256251/files/1-s2.0-S1359645415002591-main.pdf?subformat=pdfa$$xpdfa$$yRestricted 000256251 909CO $$ooai:juser.fz-juelich.de:256251$$pVDB 000256251 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich GmbH$$b5$$kFZJ 000256251 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0 000256251 9141_ $$y2015 000256251 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACTA MATER : 2014 000256251 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000256251 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000256251 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000256251 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000256251 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000256251 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000256251 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000256251 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology 000256251 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000256251 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer review 000256251 920__ $$lyes 000256251 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0 000256251 980__ $$ajournal 000256251 980__ $$aVDB 000256251 980__ $$aI:(DE-Juel1)IEK-9-20110218 000256251 980__ $$aUNRESTRICTED 000256251 981__ $$aI:(DE-Juel1)IET-1-20110218