001     256251
005     20240712112833.0
024 7 _ |a 10.1016/j.actamat.2015.04.017
|2 doi
024 7 _ |a 1359-6454
|2 ISSN
024 7 _ |a 1873-2453
|2 ISSN
024 7 _ |a WOS:000357143500029
|2 WOS
037 _ _ |a FZJ-2015-06218
041 _ _ |a English
082 _ _ |a 670
100 1 _ |a Hinterstein, M.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Interplay of strain mechanisms in morphotropic piezoceramics
260 _ _ |a Amsterdam [u.a.]
|c 2015
|b Elsevier Science
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1445586489_10785
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a A large number of transducers, ultrasonic motors or actuators are based on lead zirconate titanate (PZT) piezoceramics, with compositions near the morphotropic phase boundary (MPB) where the relevant material properties approach their maximum. Since the best piezoelectric properties, in particular the highest recoverable strains, are observed for these MPB compositions with phase coexistences, a separate analysis of each phase is mandatory. Here we present a sophisticated method to correlate the macroscopic strain observations to mechanisms on the atomic scale. The technique allows a quantification of all contributing strain mechanisms such as lattice strain, domain switching and phase transition for each phase. These results indicate that the major strain contribution is of structural instead of microstructural origin and the electric field induced phase transition occurs through polarisation rotation. Such a mechanism could be generalised in other MPB piezoceramics and will be useful to design and optimise the next generation of high performance piezoelectric materials.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Hoelzel, M.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Rouquette, J.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Haines, J.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Glaum, J.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Kungl, H.
|0 P:(DE-Juel1)157700
|b 5
|u fzj
700 1 _ |a Hoffman, M.
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.1016/j.actamat.2015.04.017
|g Vol. 94, p. 319 - 327
|0 PERI:(DE-600)2014621-8
|p 319 - 327
|t Acta materialia
|v 94
|y 2015
|x 1359-6454
856 4 _ |u https://juser.fz-juelich.de/record/256251/files/1-s2.0-S1359645415002591-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/256251/files/1-s2.0-S1359645415002591-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/256251/files/1-s2.0-S1359645415002591-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/256251/files/1-s2.0-S1359645415002591-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/256251/files/1-s2.0-S1359645415002591-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/256251/files/1-s2.0-S1359645415002591-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:256251
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)157700
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACTA MATER : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer review
|0 StatID:(DE-HGF)0030
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21