000256266 001__ 256266
000256266 005__ 20240711092231.0
000256266 0247_ $$2Handle$$a2128/9398
000256266 0247_ $$2ISSN$$a1866-1793
000256266 020__ $$a978-3-95806-084-5
000256266 037__ $$aFZJ-2015-06230
000256266 041__ $$aGerman
000256266 1001_ $$0P:(DE-Juel1)145588$$aForster, Emanuel Michael Helmut$$b0$$eCorresponding author$$gmale$$ufzj
000256266 245__ $$aThermochemische Beständigkeit von keramischen Membranen und Katalysatoren für die H$_{2}$-Abtrennung in CO-Shift-Reaktoren$$f- 2015-01-31
000256266 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2015
000256266 300__ $$aX, 137 S.
000256266 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1447320592_29705
000256266 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000256266 3367_ $$02$$2EndNote$$aThesis
000256266 3367_ $$2DRIVER$$adoctoralThesis
000256266 3367_ $$2BibTeX$$aPHDTHESIS
000256266 3367_ $$2DataCite$$aOutput Types/Dissertation
000256266 3367_ $$2ORCID$$aDISSERTATION
000256266 4900_ $$aSchriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment$$v284
000256266 502__ $$aRWTH Aachen, Diss., 2015$$bDr.$$cRWTH Aachen$$d2015
000256266 520__ $$aThe Watergas-shift reaction is a process for hydrogen production, which can be applied in IGCC power plants. One goal of current research is to find more energy efficient ways to separate the product gases after the shift and hydrogen permeable membranes appear to be a promising alternative. In cooperation with the IEK-1, several membrane and catalyst materials were tested for their thermochemical stability in gasification-related conditions. In the first part various barium zirkonates and lanthanum tungstate are exposed to gas atmospheres that simulate the gas compositions before and after the watergas-shift reaction. Powder samples were analyzed by powder diffraction and sintered samples by scanning electron microscopy and energy-dispersive X-ray spectroscopy. Exposures were performed with and without adding impurities. The observed effects include carbonization for lower temperatures and specifically for the barium zirconates the formation of zirconium rich phases and barium chloride compounds. Additionally, a CO-shift reactor with a planar lanthanum tungstate membrane had been build. In the second part, activity tests have been performed with three iron based catalysts and molybdenum carbide in a temperature range of 200 °C – 900 °C. While the iron catalysts reduced to active phases, the molybdenum carbide gradually oxidized. In the next step the iron catalysts were tested in a temperature range of 400 °C – 900 °C while adding the contaminants H$_{2}$S, HCl, KCl and NaCl. The influence of HCl could be observed until 700 °C and up to 600 °C for H$_{2}$S. With KCl and NaCl contaminations however, next to no changes in the CO-conversion were observed. In the last part, tubular silica membranes were tested for stability in water steam, with H$_{2}$S- and HCl-contamination and under temperature cycling. The hydrogen selectivity decreased significantly when the H$_{2}$O-CO-ratio reaches 1. Adding H$_{2}$S or HCl contaminants did not yield a measureable influence. Higher temperatures did negatively influence the selectivity of the membrane.
000256266 536__ $$0G:(DE-HGF)POF3-111$$a111 - Efficient and Flexible Power Plants (POF3-111)$$cPOF3-111$$fPOF III$$x0
000256266 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000256266 650_7 $$xDiss.
000256266 8564_ $$uhttps://juser.fz-juelich.de/record/256266/files/Energie_Umwelt_284.pdf$$yOpenAccess
000256266 8564_ $$uhttps://juser.fz-juelich.de/record/256266/files/Energie_Umwelt_284.gif?subformat=icon$$xicon$$yOpenAccess
000256266 8564_ $$uhttps://juser.fz-juelich.de/record/256266/files/Energie_Umwelt_284.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000256266 8564_ $$uhttps://juser.fz-juelich.de/record/256266/files/Energie_Umwelt_284.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000256266 8564_ $$uhttps://juser.fz-juelich.de/record/256266/files/Energie_Umwelt_284.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000256266 8564_ $$uhttps://juser.fz-juelich.de/record/256266/files/Energie_Umwelt_284.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000256266 909CO $$ooai:juser.fz-juelich.de:256266$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000256266 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000256266 9141_ $$y2015
000256266 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145588$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000256266 9131_ $$0G:(DE-HGF)POF3-111$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vEfficient and Flexible Power Plants$$x0
000256266 920__ $$lyes
000256266 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000256266 9801_ $$aFullTexts
000256266 980__ $$aphd
000256266 980__ $$aVDB
000256266 980__ $$abook
000256266 980__ $$aI:(DE-Juel1)IEK-2-20101013
000256266 980__ $$aUNRESTRICTED
000256266 981__ $$aI:(DE-Juel1)IMD-1-20101013