001     256280
005     20210131030435.0
024 7 _ |a 10.1002/adfm.201500865
|2 doi
024 7 _ |a 1057-9257
|2 ISSN
024 7 _ |a 1099-0712
|2 ISSN
024 7 _ |a 1616-301X
|2 ISSN
024 7 _ |a 1616-3028
|2 ISSN
024 7 _ |a WOS:000363685900013
|2 WOS
024 7 _ |a altmetric:21827519
|2 altmetric
037 _ _ |a FZJ-2015-06244
082 _ _ |a 620
100 1 _ |a Siemon, Anne
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Realization of Boolean Logic Functionality Using Redox-Based Memristive Devices
260 _ _ |a Weinheim
|c 2015
|b Wiley-VCH
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1445864169_12114
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Emerging resistively switching devices are thought to enable ultradense passive nanocrossbar arrays for use as random access memories (ReRAM) by the end of the decade, both for embedded and mass storage applications. Moreover, ReRAMs offer inherent logic-in-memory (LIM) capabilities due to the nonvolatility of the devices and therefore great potential to reduce the communication between memory and calculation unit by alleviating the so-called von Neumann bottleneck. A single bipolar resistive switching device is capable of performing 14 of 16 two input logic functions in the logic concept presented by Linn et al. (“CRS-logic”). In this paper, five types of selectorless devices are considered to validate this CRS-logic concept is experimentally by means of the IMP and AND logic operations. As reference device a TaO x -based ReRAM cell is considered, which is compared to three more advanced device configurations consisting either of a threshold supported resistive switch (TS-ReRAM), a complementary switching device (CS), or a complementary resistive switch (CRS). It is shown that all of these devices offer the desired LIM behavior. Moreover, the feasibility of XOR and XNOR operations using a modified logic concept is applied for both CS and CRS devices and the pros and cons are discussed.
536 _ _ |a 524 - Controlling Collective States (POF3-524)
|0 G:(DE-HGF)POF3-524
|c POF3-524
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Breuer, Thomas
|0 P:(DE-Juel1)157669
|b 1
700 1 _ |a Aslam, Nabeel
|0 P:(DE-Juel1)140489
|b 2
700 1 _ |a Ferch, Sebastian
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kim, Wonjoo
|0 P:(DE-Juel1)159348
|b 4
700 1 _ |a van den Hurk, Jan
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Rana, Vikas
|0 P:(DE-Juel1)145504
|b 6
700 1 _ |a Hoffmann-Eifert, Susanne
|0 P:(DE-Juel1)130717
|b 7
700 1 _ |a Waser, Rainer
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Menzel, Stephan
|0 P:(DE-Juel1)158062
|b 9
700 1 _ |a Linn, Eike
|0 P:(DE-HGF)0
|b 10
|e Corresponding author
773 _ _ |a 10.1002/adfm.201500865
|g Vol. 25, no. 40, p. 6414 - 6423
|0 PERI:(DE-600)2039420-2
|n 40
|p 6414 - 6423
|t Advanced functional materials
|v 25
|y 2015
|x 1057-9257
909 C O |o oai:juser.fz-juelich.de:256280
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)157669
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)159348
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)145504
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)130717
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)158062
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-524
|2 G:(DE-HGF)POF3-500
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV FUNCT MATER : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ADV FUNCT MATER : 2014
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21