000256296 001__ 256296
000256296 005__ 20240625095122.0
000256296 0247_ $$2doi$$a10.1371/journal.pone.0138679
000256296 0247_ $$2Handle$$a2128/9367
000256296 0247_ $$2WOS$$aWOS:000362962300008
000256296 0247_ $$2altmetric$$aaltmetric:4823416
000256296 0247_ $$2pmid$$apmid:26460827
000256296 037__ $$aFZJ-2015-06260
000256296 082__ $$a500
000256296 1001_ $$0P:(DE-HGF)0$$aFinnerty, Justin John$$b0$$eCorresponding author
000256296 245__ $$aCation Selectivity in Biological Cation Channels Using Experimental Structural Information and Statistical Mechanical Simulation
000256296 260__ $$aLawrence, Kan.$$bPLoS$$c2015
000256296 3367_ $$2DRIVER$$aarticle
000256296 3367_ $$2DataCite$$aOutput Types/Journal article
000256296 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1563263045_1091
000256296 3367_ $$2BibTeX$$aARTICLE
000256296 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000256296 3367_ $$00$$2EndNote$$aJournal Article
000256296 520__ $$aCation selective channels constitute the gate for ion currents through the cell membrane. Here we present an improved statistical mechanical model based on atomistic structural information, cation hydration state and without tuned parameters that reproduces the selectivity of biological Na+ and Ca2+ ion channels. The importance of the inclusion of step-wise cation hydration in these results confirms the essential role partial dehydration plays in the bacterial Na+ channels. The model, proven reliable against experimental data, could be straightforwardly used for designing Na+ and Ca2+ selective nanopores.
000256296 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000256296 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x1
000256296 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x2
000256296 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x3
000256296 588__ $$aDataset connected to CrossRef
000256296 7001_ $$0P:(DE-Juel1)161525$$aPeyser, Alexander$$b1$$eCorresponding author$$ufzj
000256296 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b2$$ufzj
000256296 773__ $$0PERI:(DE-600)2267670-3$$a10.1371/journal.pone.0138679$$gVol. 10, no. 10, p. e0138679 -$$n10$$pe0138679 -$$tPLoS one$$v10$$x1932-6203$$y2015
000256296 8564_ $$uhttp://journals.plos.org/plosone/article?id=10.1371/journal.pone.0138679
000256296 8564_ $$uhttps://juser.fz-juelich.de/record/256296/files/finnerty-2015.pdf$$yOpenAccess
000256296 8564_ $$uhttps://juser.fz-juelich.de/record/256296/files/finnerty-2015.gif?subformat=icon$$xicon$$yOpenAccess
000256296 8564_ $$uhttps://juser.fz-juelich.de/record/256296/files/finnerty-2015.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000256296 8564_ $$uhttps://juser.fz-juelich.de/record/256296/files/finnerty-2015.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000256296 8564_ $$uhttps://juser.fz-juelich.de/record/256296/files/finnerty-2015.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000256296 8564_ $$uhttps://juser.fz-juelich.de/record/256296/files/finnerty-2015.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000256296 8767_ $$92015-10-12$$d2015-10-12$$eAPC$$jDeposit$$lDeposit: PLoS$$zUSD 1350,-
000256296 909CO $$ooai:juser.fz-juelich.de:256296$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000256296 9101_ $$0I:(DE-588b)1026307295$$6P:(DE-HGF)0$$aGerman Research School for Simulation Sciences$$b0$$kGRS Aachen
000256296 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161525$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000256296 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000256296 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000256296 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x1
000256296 9141_ $$y2015
000256296 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000256296 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000256296 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000256296 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000256296 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLOS ONE : 2014
000256296 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000256296 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000256296 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000256296 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000256296 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000256296 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000256296 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000256296 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000256296 920__ $$lyes
000256296 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000256296 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x1
000256296 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x2
000256296 980__ $$ajournal
000256296 980__ $$aVDB
000256296 980__ $$aI:(DE-Juel1)JSC-20090406
000256296 980__ $$aI:(DE-Juel1)IAS-5-20120330
000256296 980__ $$aI:(DE-Juel1)INM-9-20140121
000256296 980__ $$aAPC
000256296 980__ $$aUNRESTRICTED
000256296 9801_ $$aAPC
000256296 9801_ $$aUNRESTRICTED
000256296 9801_ $$aFullTexts
000256296 981__ $$aI:(DE-Juel1)IAS-5-20120330
000256296 981__ $$aI:(DE-Juel1)INM-9-20140121