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Abstract

Cation selective channels constitute the gate for ion currents through the cell membrane.

Here we present an improved statistical mechanical model based on atomistic structural

information, cation hydration state and without tuned parameters that reproduces the selec-

tivity of biological Na+ and Ca2+ ion channels. The importance of the inclusion of step-wise

cation hydration in these results confirms the essential role partial dehydration plays in the

bacterial Na+ channels. The model, proven reliable against experimental data, could be

straightforwardly used for designing Na+ and Ca2+ selective nanopores.

Introduction

Biological cation channels (Fig 1) allow the selective passage of Na+, K+ or Ca2+ through cell

membranes [1–4] at passage rates near the diffusion limit. The cation discrimination occurs in

the “selectivity filter” (SF, pink zone in Fig 1), a short, narrow section [5, 6] of the entire ion

conduction pore (yellow volume in Fig 1).

In the voltage-gated-like (VGL) chanome [7] theory [8, 9], simulation [10] and experiment

[11, 12] have shown the critical role that hydration plays in cation channels. It is now accepted

that K+ channels transport K+ ions without a hydration shell [6]. Recent X-ray structures [13–

15] and corresponding MD simulations [10, 16, 17] suggest that Na+ ions are transported with

a partial hydration shell through bacterial Na+ selective ion channels. Additionally, the recent

atomic structures of Na+ channels and a Ca2+ channel [18] show that the charged side-chains

are embedded within the SF pore wall with only one of the oxygens of the carboxylic acid

group exposed.
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Here we investigate the role of hydration using simplified models. Simplified models pro-

vide complementary information [19, 20] to atomistic models, giving insights on the value of

specific factors for selectivity. A major advantage of such methods is that by calculating proper-

ties using rigorous statistical thermodynamics, estimates of the value of a property have well-

defined convergence due to the Central Limit Theorem. The top-down approach of simplified

models means they may intrinsically identify the simplest and most robust physical principles

responsible for a phenomenon, thus identifying the critical features needed to intentionally

engineer artificial cation-selective nanopores.

The simplified model we focus on is based on the CSC Hamiltonian (Eq 1), [21–34] which has

been successfully used to study the properties of mammalian Ca2+ channels; for example explain-

ing the anomalous mole fraction effect [35, 36]. A major feature of the original CSC Hamiltonian

is that the exact formulae for the included physics are used and it therefore has no parameters

which are adjusted to tune the simulation results. This contrasts with classical molecular dynam-

ics where a force field is parameterized to reproduce a set of representative physical properties.

The key output of the CSCMC simulation is a population profile of ions within the simulation

cell, and in particular within the SF. The competition between the cations for occupancy of the

SF, which can be deduced from these profiles, determines the ion channel selectivity (α). This is

measured experimentally as the ratio of the conductance of two ionic currents. We also compare

concentration profiles for different cations from a single simulation, avoiding many of the prob-

lems associated with comparing absolute values from different simulations [37].

The core of the original CSC Hamiltonian is the competition between charge and space.

The competition for space is modulated by a cylinder (pink regions in Figs 2 and 3) through

Fig 1. Cation channels from the voltage-gated like family [7] (represented here by NavAb; PDB 3RVY) [13]
consist of a four domain transmembrane protein with an ion conduction pore (yellow), a cation selective filter
at the extracellular pore mouth (SF, pink) and a gate region at the intracellular pore end (green). Inward
pointing carbonyl oxygens from the backbone amide groups provide a lining of the SF [5, 6]. The charged
side chains present in the SFs of the bacterial Na+ channels and the Ca2+ selective CavAb [18] structure are
embedded in the pore lining. Hydrated (large) and fully dehydrated (small) Na+ (blue) and K+ (green) cations
are shown to scale as spheres. Black bars are 5 Å.

doi:10.1371/journal.pone.0138679.g001
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Fig 2. The geometry of the SF in the original CSCmodel (A, pink) was empirically parameterised to
reproduce the cavity of the real SF (B, yellow). In the new model we use the atoms that line the pore (B and C,
red balls) to reproduce the pore cavity (C, yellow). Using a realistic SF requires considering cation hydration
(Hydrated(large) and fully dehydrated (small) Na+ (blue) and K+ (green) cations as spheres).

doi:10.1371/journal.pone.0138679.g002

Fig 3. Schematic view of the simulation cell used here. The cell is a cylinder divided by a virtual
membrane perpendicular to the cylinder’s axis of rotation. The model cation channel forms the only pore
through the membrane and is located at the cylinder’s axis of rotation. The blue outline shows the dielectric
boundary surface of the protein. The pink region shows where the spheres modelling the atoms lining the SF
are located.

doi:10.1371/journal.pone.0138679.g003
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which the spheres representing the solute ions must pass. The original CSC model used param-

eters for the cylinder deduced from experiments [11] combined with solute ion spheres with

sizes that matched those used to deduce the cylinder parameters. The charge competition arises

through charged spheres representing the side-chain charges, located within the cylinder, that

interact with the solute ions as they pass through the cylinder (Fig 2A). To get closer to an

atomistic representation of the pore (Fig 2B) means the existing representation can not be used

directly. We have to either embed the side-chain charge into the cylinder representing the pore

or adopt an alternative representation of the pore. Our recent modification of the CSC Hamil-

tonian [38] allows us reproduce the position and flexibility of any atom in an X-ray structure.

Using this scheme we can build up an alternative representation of the pore from the atoms in

the experimental structures that actually line the pore wall (Fig 2C). This would include

charged atoms from side-chains in the Na+ and Ca2+ ion channels without needing to treat

them as a special case. Hence the competition for space is now modulated by the volume

defined by these pore wall spheres. Implicit in using such a volume to modulate the competi-

tion for space is that the spheres representing the solute ions also have sizes that correspond to

the atomistic structure (Fig 2 balls at top). These solute ions vary in hydration state, being

completely dehydrated in the KcsA channel [6] and partially dehydrated in the Na+ ion chan-

nels [10, 13–17]. Thus, determining the appropriate size of solute ions involves the consider-

ation of hydration and how full and partial hydration will change the size of these ions as they

take part in the competition for space within the SF pore (Fig 2C).

Here we add another important ingredient, cation hydration, to our simplified model. We

describe our work to combine partial hydration and an atomistic representation of the SF pore

wall in a manner conceptually consistent with the original CSC model. The good agreement

between the presented model and experimental selectivity for Na+ and Ca2+ channels suggests

that the included electrostatics, volume exclusion and hydration capture sufficient physics to

explain selectivity for SFs containing charged residues, which are typical for Na+ and Ca2+

selective channels.

Methods

The changes to the CSC model presented here change how the model is constructed but does

not change the CSC Hamiltonian used in the simulation. In this paper we present the following:

• An atomistic representation of the SF pore wall. This requires modelling the oxygens of the

carbonyl groups lining the SF using a partial charge on one particle as a representation of the

carbonyl functional group and its dipole.

• A specific model of cation hydration tailored to the CSC cation channel simulations. It intro-

duces no change to the CSC Hamiltonian, preserving the property of a model without adjust-

able parameters. The hydration model consists of three parts.

� The population distribution of the various hydrated cations in solution, calculated directly

from the Boltzmann distribution and experimental partial dehydration energies.

� A Grand Canonical Monte Carlo move that swaps a cation between hydration states.

� A spherical approximation for the various hydrated cation states passing through the ion

channel. The sphere diameters are Hille ‘gate-size” [11] and are based on geometric con-

siderations and experimental data for hydrated cations in solution.

We chose the CSC Hamiltonian combined with grand canonical Monte Carlo simulations

because they provide cation density profiles in the SF with well defined convergence
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PLOS ONE | DOI:10.1371/journal.pone.0138679 October 13, 2015 4 / 18



characteristics from which selectivities can be derived. The CSC combines a Hamiltonian (Eq

1) and simulation set up that includes:

H ¼ UC þ UIC þ Umob þ Ucp þ Uoverlap ð1Þ

• A cylindrical simulation cell divided into two equal halves by a virtual membrane (Fig 3).

These halves represent the bulk solution either side of the membrane.

• A toroid shape, embedded in the virtual membrane, to represent the ion channel protein (Fig

3, blue outline).

� The surface of the toroid represents the dielectric boundary between the aqueous media

and protein. The model computes the induced surface charges on this boundary surface

(UIC) [39].

� The pore of the toroid represents the ion channel pore and provides a volume connecting

the bulk volumes either side of the membrane.

� The radius and length of the narrowest part of the pore of the toroid are chosen to model

the SF of the ion channel (more information in the supporting material). The dimensions

of the SF are now fitted from the X-ray structure rather than using empirical estimates

from literature.

• Selected atoms from the protein are placed in the narrow pore of the toroid to represent the

pore wall and charge sites in the SF of the ion channel protein.

� These atoms are localized (Umob) with positions and flexibility taken directly from the

coordinates and B-factors of the X-ray crystal structure [38].

• Charge-charge interactions (UC) are modeled using the Coulomb equation for dielectric media.

• Spatial interactions are handled using hard-body overlap (Uoverlap). With charged particles

not being able to overlap each other or the volume contained within the protein and

membrane.

• The concentration of the solute ions in the simulation is maintained by a fixed chemical

potential (Ucp; grand canonical μVT ensemble).

Representation of the pore wall

Including charged and uncharged atoms that line the SF means we can embed charge sites into

the pore wall and at the same time impose the same volume constraints that are present in the

atomistic structure. These pore wall spheres are surrounded by a cylinder (shaded region in Fig

3), whose role in the competition for space is now to ensure solute ions can not go “outside”

the pore wall spheres. For the ion channels studied here, the SF pore wall is composed of polar

carbonyl oxygen atoms of the protein backbone [6, 13–15]. These could be represented using

two spheres with opposite charges to form a dipole. However, as a first approximation we

tested representing these groups using a single partial negative charge sphere. We considered

that this approximation is a reasonable starting point as the influence of individual charges and

asymmetry in charge reduces very rapidly with distance because our model ions exist in the

strong dielectric media of water.

The embedding of the charged side groups in the SF pore wall also caused us to reconsider

the earlier approach used in the CSC model of representing carboxylic acid groups as two half

Cation Channel Selectivity Using Structure Information and Simulation
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charged oxygen atoms. As an approaching cation would cause the charge to localize on the

oxygen atom nearest to the pore wall, a single ion appeared to better capture these influential

short-range electrostatic interactions better than a two ion representation. We therefore chose

to represent the carboxylic group using a single charged atom in the position of the oxygen

nearest to the pore wall.

Hydration model

Each cation type passing through the channel may lose differing numbers of waters of hydra-

tion in order to fit through the narrowest part of SF. Our main assumption is that we can sepa-

rate the hydration and dehydration reaction from the passage through the ion channel. For

Na+ and K+ cations, this assumption is reasonable since the experimentally measured residence

time of waters in the hydration shell of these cations (10−10s) [40] is two orders of magnitude

shorter than cation passage through an ion channel (10−8s) [11]. This is not the case for diva-

lent Ca2+. However the much higher energetic cost of removal of waters from the Ca2+ com-

pared to monovalent ions (Table 1) means we can exclude dehydration from consideration

when examining Ca2+ selective channels. Indeed, the CSC model without hydration has already

provided accurate predictions of Ca2+ channel behavior [29, 30, 41].

Populations of partially hydrated cations. The major output of the CSC MC simulation

is a population profile of ions within the simulation cell, and in particular within the SF. The

separation of timescales between hydration and cation passage for Na+ and K+ ions means we

can divide each cation population into hydration state subpopulations, all of which are present

in solution:

½A� ¼ ½A � 0H
2
O� þ ½A � 1H

2
O� þ ½A � 2H

2
O� . . .

½B� ¼ ½B � 0H
2
O� þ ½B � 1H

2
O� þ ½B � 2H

2
O� . . .

where the total concentration of ions [A] and [B] are the sum of hydration state subpopula-

tions. We can calculate these relative populations (see Table 1) using the Boltzmann equation

and the relative dehydration free energies. This can also be applied to the SF to give:

½A � X� ¼ ½ðA � 0H
2
OÞ � X� þ ½ðA � 1H

2
OÞ � X� . . .

½B � X� ¼ ½ðB � 0H
2
OÞ � X� þ ½ðB � 1H

2
OÞ � X� . . .

where [A�X] is the sum of the interactions of hydration state subpopulations of A at some point

within the SF (X).

A complete model calculation would involve a simulation containing all hydration states. In

practice two factors limit the practicality of such simulations. Firstly, the sub-populations

Table 1. Model population factor ([Adxe]bulk[A]bulk) and cation diameters (dM+,x) for partially hydrated cations. Partial hydration energies used are
experimental gas-phase data [42]. The base diameters of the hydrated cations were calculated from the experimental cation–water oxygen (rMO) and water

oxygen–water oxygen (rOO) radial distribution functions in ionic solutions [40, 43]; see Fig 4, d
Mþ ;6

¼ 2 r
MO

þ 1

2
r
OO

� �

.

K+ Na+ Ca2+

½Kþdxe�bulk
½Kþ �bulk

dK+,x
½Naþdxe�bulk
½Naþ �bulk

dNa+,x
½Ca2þdxe�bulk
½Ca2þ �bulk

dCa2+,x

x = 6 1 8.32 1 7.44 1 7.44

5 2.2×10−2 � 8.32 5.8×10−3 � 7.44 1.8×10−16 � 7.44

4 5.5×10−5 6.21 1.7×10−5 5.44 4.4×10−34 5.44

3 2.5×10−8 5.54 3.7×10−10 5.10 8.5×10−53 5.10

2 7.9×10−13 2.8 6.3×10−17 2.0

doi:10.1371/journal.pone.0138679.t001
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B �mH2O and A � nH2O decrease by several orders of magnitude as the cation hydration num-

ber,m and n, decreases resulting in h[(B �mH2O) � X]i and h[(A � nH2O) � X]i rapidly converg-

ing to zero due to the limits of finite sized simulation. On the other hand, only values ofm and

n, that allow B �mH2O or A � nH2O to fit within the SF and therefore pass through the ion

channel will have non-zero contributions to [B � X] and [A � X]. We therefore perform prefer-

ential sampling of the critical hydration states by ignoring values ofm and n for which the val-

ues of h[(B �mH2O) � X]i and h[(A � nH2O) � X]i will be zero. This involves determining the

largest hydration numbers, dme and dne, that allows the hydrated cation to fit in the SF. These

maximum numbers and consecutively lower values ofm and n which have populations within

three orders of magnitude of the populations of dme and dne are the hydration states included

in the final simulations.

In these simulations the sum of the partially hydrated ions in the bulk is still that of the orig-

inal [A]bulk. This enhanced sampling of the critical hydration states then requires a rescaling

factor of the ratio of the sum of the sub-populations used in the simulations to the full popula-

tion of A to be applied:

½Adne�bulk
½A�bulk

¼

P

j<n½A � jH
2
O�

P

i<1½A � iH
2
O�

ð2Þ

Grand Canonical Monte Carlo swap move. The difference in time scales between cation

passage and dehydration for Na+ and K+ cations implies that not only can we model dehydra-

tion as a set of individual hydration states, but we can also include transitions between these

states as a grand canonical Monte Carlo move. We therefore add a new grand canonical move

into the CSC MCmodel that swaps cation hydration states to model variation in the hydration

state profile. Such a move is a concatenation of two simple grand canonical moves; a grand

canonical deletion of the particle in the original hydration state and a grand canonical addition

of the particle in the new hydration state at the location of the original particle.

Model of partially hydrated cations. The CSC Hamiltonian represents a cation’s spacial

component as a sphere with the cation’s charge component being a point charge in the centre

of the sphere. Therefore, the only size parameter is the cation diameter (dB,m and dA,n). We

choose, as a first approximation, to ignore the dipolar interactions between the cation and its

waters of hydration and model hydrated ions using this simple spherical model. This model

also eliminates any consideration of the rotational entropy due to the potentially asymmetric

shape of the partially hydrated cation cluster. We anticipate, however, that since the cluster has

very little freedom of rotation while in the SF due to the size constraints of the narrow pore, a

spherical model can be a reasonable first approximation. With a sphere, two choices for model-

ing the size seemed appropriate (i) ignore the shape of the partially hydrated cations and

model the sphere based on the occupied volume, or (ii) maintain some shape information and

ignore the occupied volume. The most critical spacial component will be the space the cation

occludes during motion along the pore axis because the SF is such a narrow tube ions have lim-

ited lateral mobility. For example, if we consider a cation with zero, one or two waters of hydra-

tion, these water of hydration could orient along the channel axis and all three hydration states

would effectively occlude the same minimal cross-sectional area along the direction of motion.

This suggests that the resistance to motion along the pore axis will be in proportion to this

cross-sectional area and not to the total volume of the cation complex. We thus take the critical

size parameter as the area the partially hydrated cation water cluster occludes along the direc-

tion of motion. These diameters are thus Hille’s “gate size” [11] rather than, for example, an

“effective” diameter determined from cation diffusion experiments in water.

Cation Channel Selectivity Using Structure Information and Simulation
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K+ and Na+ cations are normally hexa-coordinated in the first hydration shell [40, 42]. We

assume that two of the waters of hydration can always be oriented along the SF pore axis and

that they will be the last to be removed. This sets the four remaining coordination sites from

which water is removed in a plane perpendicular to the SF axis (Fig 4). Using experimental cat-

ion–water oxygen (rMO) and water oxygen–water oxygen (rOO) distances [40, 43] we calculate

dB,m and dA,n as the diameter of the smallest circumcircle around the cation and waters of

hydration that occupy from zero to four of these planar sites (see Fig 4 and Table 1).

Note that this coordination constraint only applies to the water hydration shell. The model

places no limitations on the coordination of ions with other species. In particular, the cations

are free to coordinate with eight atoms in the SF.

Simulation parameters

Amajor criterion when extending the model has been to keep the model as simple as possible

and to use parameters directly derived from external sources, favoring experimental work. A

major feature of the unmodified CSC Hamiltonian is that it had no parameters which are

adjusted to tune the simulation results. The parameters that are in the CSC Hamiltonian are

the fixed dielectric constant of water (80) and protein (10), the charge on an electron, Avoga-

dro’s number, temperature and the Boltzmann factor. Input into the current model includes

the atomic position and the B-factor of atoms from X-ray, the experimentally derived atomic

radii and the geometry of the dielectric boundary surface between the aqueous and protein

media. The dielectric boundary is modeled as a hard surface upon which an induced charge

can develop. Previous work [30] has shown that the presence of the dielectric boundary is

Fig 4. Schematic for the circumcircles that give the partially hydrated cation diameters, dM+, used in
the CSC simulations (not drawn to scale). They follow the replacement of four waters of hydration (dashed
circles) in a plane perpendicular to the channel axis. Removal of one water does not change the diameter (0,
1 = orange). Loss of more waters reduces the diameter (2 = blue, 3 = pink) to a minimumwhen four (or more)
waters are lost (4 = black). The actual dimensions are calculated from the experimental cation–water oxygen
distance (r(MO)) and water oxygen–water oxygen distance (r(OO)).

doi:10.1371/journal.pone.0138679.g004
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important but variation of the dielectric constant of the protein media (4–20) [44, 45] and the

exact radius of the SF boundary surface [45] are less influential in determining selectivity.

In this work, we can not take the dimensions for the flattened toroid of the dielectric bound-

ary representing the protein (blue line in Fig 3) directly from experiment. The most critical

parameter is the diameter of the cylindrical part of the boundary surface in the SF (pink region

in Fig 3). Previously, the dimensions of this boundary where critical for both control of pore

volume and confinement of the electrostatic field. As we now represent the pore wall explicitly,

the boundary surface no longer plays a crucial role in controlling pore volume. Additionally,

previous work [45] showed that small changes in the diameter of the surface has a very small

influence on the magnitude of the result. Our approach was therefore to maximise the freedom

of the spheres representing the pore wall while avoiding solute cations being able to fit between

these spheres and the boundary surface. Our initial estimate was a diameter slightly greater

than the base atomic position plus particle radius of the spheres representing the pore wall of

the SF. Test simulations were then performed to check if the diameter was too small and signif-

icantly truncated movement of the spheres of the pore wall or too large and allowed solute cat-

ions between these spheres and the boundary surface.

The parameter not taken directly from experiment or calculated through test simulations is

the partial charge on the pore wall oxygen atoms. The impact of this charge will be most signifi-

cant for the K+ channel model, where it is the only endogenous charge in the SF, compared to

the Na+ and Ca2+ channel models that have fully charged residues in the SF. We therefore

chose the value of −0.1 taken from the partial charge on the pore wall oxygen atoms seen from

QM/MMMD simulations of the KcsA K+ channel [46]. This value was used universally for all

pore wall oxygen atoms with no attempt to tune the parameter for specific selectivity.

Software Availability

The software used to perform these simulations is available from https://github.com/charge-

space-competition/ion-channel.

Results

We simulated the SF from two bacterial Na+ channels (NavAb [13] (Fig 1) and NavMs [14]), a

typical K+ channel (KcsA [6, 47]) and the Ca2+ selective mutant of the bacterial NavAb Na+

channel (CavAb) [18], the only Ca2+ selective channel in the VGL chanome [7] for which an

X-ray structure has been determined. The simulated concentration profiles of solute cations

within the SF have a shape characteristic for each ion channel ([A � X] and [B � X], Figs 5 and 6,

7). The location of the minima and maxima for a particular channel occur in similar ranges

across cations. Interpreting selectivity from these density profiles requires application of a

mechanism of cation passage. A single-barrier mechanism and the assumption the cations

have similar average velocities is one of the simplest models and corresponds closely to what

Hille describes as a single-ion pore [11]. The calculation of selectivity from this single-barrier

mechanism is straightforward and involves comparing cation concentration ratios at the rate

determining barrier in the SF (i.e. the minima in density: [A � X]min and [B � X]min) to the

ratios in the bulk solution (for details see the supporting information):

asim ¼
½A�bulk½B � X�min

½B�bulk½A � X�min

ð3Þ

When hydration is included we may have a only subset of partially hydrated cations in the bulk
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giving:

âsim ¼
½Adne�bulk½B � X�min

½Bdme�bulk½A � X�min

ð4Þ

where [m] and [n] are the maximum hydration states that still allow the partially hydrated cat-

ions to fit within the SF. Correcting the bulk concentration by the population factors (Eq 2)

Fig 5. Simulated cation profile (as moving average over 2Å) in the Ca2+ (CavAb) ion channel SF.
[Mn2+�X] green, [Ca2+�X] blue, [Na+�X] pink and [Ba2+�X] orange. Concentration minimum region used to
calculate selectivity [−5.5 : −2.5].

doi:10.1371/journal.pone.0138679.g005

Fig 6. Simulated cation profile (as moving average over 2Å) in the Na+ (NavAb) ion channel SF. [Na+�X]
pink and [K+�X] black. Concentration minimum region used to calculate selectivity [−4.0 : −2.0].

doi:10.1371/journal.pone.0138679.g006
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leads to the following:

ahyd ¼
½Bdme�bulk½A�bulk
½Adne�bulk½B�bulk

ð5Þ

asim ¼ âsim � ahyd ð6Þ

Our calculated α values (Table 2) show quantitative agreement for the Ca2+ and Na+ channels

and qualitative agreement for the K+ channel.

A key finding is that our model reproduces selectivity in the bacterial Na+ channels. The

hydration level of cations in the Na+ channels studied is in agreement with suggestions from

recent X-ray [13–15] and corresponding MD simulation [10, 16, 17] studies. Our results com-

plement these studies by highlighting the critical role that partial dehydration plays in the

selectivity. In our simulations the largest occupancies in the SF are the fourth Na+ hydration

state, (Na � 4(H2O))
+, and the third K+ state, (K � 3(H2O))

+. Thus, even though hydration states

Fig 7. Simulated cation profile (as moving average over 2Å) in the K+ (KcsA) ion channel SF. [Na+�X]
pink, [K+�X] black, [NH

þ
4
�X] red and [Rb+�X] or [Tl+�X] light blue. Concentration minimum region used to

calculate selectivity [−6.5 : −2.5].

doi:10.1371/journal.pone.0138679.g007

Table 2. Predicted equilibrium constant values from simulations based on the ion channel X-ray structures. Calculated selectivities are shown rel-

ative to the cation selected by the specific channel. (Eq 6: αsim ¼ αhyd � α̂sim).

Channel Ions A,
B

Hyd. αhyd α̂sim αsim Expt

KcsA [6] K+,Na+ n,m � 2 49,000 0.1 4,900 > 170
[47]

NavMs
[14]

Na+,K+
n,m � 4 0.3 30 9 11–18

[10]

NavAb
[13]

Na+,K+
n,m � 4 0.3 12 2.4 6–30 [16]

CavAb
[18]

Ca2+,
Na+

(n,
m � 6)

1 600 600 380 [18]

doi:10.1371/journal.pone.0138679.t002
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4 and 3 are included in our simulations for both Na+ and K+, the (K � 4(H2O))
+ cation is not

present in the SF. This allows the value of âNa;K to overcome the population disadvantage (Na �

4(H2O))
+ has over (K � 4(H2O))

+ in a real aqueous solution (αhyd:Na,K = 0.3), leading to Na+

selectivity overall.

We introduced a simple model of hydration that contributes two key factors into the calcu-

lation of selectivity: (i) The population of the partially dehydrated ions as set by their relative

partial dehydration energies (αsim,dehyd). (ii) The representation of the partially dehydrated cat-

ion as a sphere of a certain radius.

The first test of the hydration model and the pore wall is if it can reproduce the behavior of

the original CSC Hamiltonian for Ca2+ ion channels. In our simulations, Ca2+ would not be

dehydrated because it has a much larger dehydration energy than the monovalent cations (for

example the loss of two water molecules would give Na+ a huge advantage αhyd,Ca,Na =

3×10−29). The Ca2+ αsim,hyd values (Table 3) for fully hydrated ions are in good agreement with

experiment and earlier CSC simulations that were based on an empirical model of the SF using

cation sizes equivalent to the dehydrated ions. This shows that including atomistic pore wall

and hydration in the CSC model continues to reproduce the selectivity behavior of Ca2+ ion

channels as seen for simple CSC models without the new features.

To test if using hydrated ions is required we compared these selectivities with ones from

simulations with cations at their fully dehydrated radii (Table 3: αsim,dehyd). All selectivities are

reduced when using the smaller dehydrated radii cations, with the key selectivity between Ca2+

and Na+ falling below the experimental value. This can be explained from knowing that selec-

tivity decreases as volume increases [45] and we assume the volume defined by the atomistic

representation of the pore wall matches the size of fully hydrated cations rather than the size of

dehydrated cations. Furthermore, in our model fully hydrated Ca2+ ions can not enter the Na+

selective channels whereas fully dehydrated Ca2+ ions could enter the Na+ selective channels

which would lead to (results not shown) these channels being predicted as Ca2+ selective. This

shows that including atomistic detail in the SF must be matched with realistically sized

hydrated ions.

The second test of hydration and the representation of the pore wall is to see the results for

the KcsA channel for ions with hydration energy close to that of K+, the selectivities

(Tlþ > Kþ
> Rbþ

> NHþ
4
) [48, 49] follow, in inverse order, the cation hydration energies

(Tlþ < Kþ
< NHþ

4
< Rbþ) [50, 51] rather than the cation size (Kþ

< Tlþ ≊Rbþ
≊NHþ

4
) [52,

53]. From Table 4 we see that αhyd is the dominant term in determining selectivity from simu-

lation, resulting in selectivities that are not in agreement with experiment.

The KcsA channel has no charged residues in the SF and so the dominant electrostatic inter-

action seen in the Na+ and Ca2+ channels is not present. The main attractive interaction is the

interaction of the cations with the carbonyl oxygens, the geometry allowing up to eight atoms

in the SF to coordinate with a single cation. This is represented in the CSC Hamiltonian only as

an electrostatic interaction between the cation and the partial charge on the carbonyl oxygens.

The ability of this attractive electrostatic interaction to mimic the attractive interaction inferred

Table 3. Predicted selectivity from simulations based on the CavAb [18] ion channel X-ray structures
using cations with radii of the fully hydrated (âsim;hyd) and fully dehydrated (âsim;dehyd) species.

Ions αsim,hyd αsim,dehyd Expt

Na+,Ca2+ 600 100 380 [18]

Mn2+,Ca2+ 0.4 0.8 Generally Mn2+ > Ca2+

Ba2+,Ca2+ 200 3 Generally Ca2+ > Ba2+

doi:10.1371/journal.pone.0138679.t003
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from the experimental results was evaluated by comparing simulations with different charges

on the oxygens atoms in pore wall of the SF. When going from -0.1 to 0.0 (Table 5, Fig 8) the

major impact appears to be to modulate the concentration of ions in the pore, with smaller

ions benefitting the most. However, selectivity is derived from the relative concentrations and

we find no correlation between the charge and selectivity in our small sample, contrary to ear-

lier suggestions [54]. This points to less significance of this charge for determining selectivity.

Therefore the principle of parsimony suggests that these charges should be left out in future

simulations. The most telling problem is Rb+ and Tl+, which are modeled identically in our

Table 4. Comparison of simulated and experimental [47] selectivity values for the KcsA [6] ion chan-
nel with cations of similar full hydration energies [51].

Ions αhyd α̂sim αsim Expt
(PK+PX+)

NH
þ
4
K

þ 0.02 4.0 0.08 5

Rb+,K+ 0.0003 1.4 0.0004 1.2

Tl+,K+ 7.5 1.4 10 0.3

doi:10.1371/journal.pone.0138679.t004

Table 5. Comparison of change in maximum concentration and selectivity from simulations based on the KcsA X-ray structure [6] with and with-
out “polarization” charges on the SF oxygen atoms.

Ion (A) diameter /Å [A � X](max,0.0) [A � X](max,−0.1)
aðsim;K:A;�0:1Þ

aðsim;K:A;0:0Þ

Na+ 1.94 0.001 0.05 0.8

K+ 2.82 0.001 0.006

Rb+ 3.00 0.001 0.003 1.1

NH
þ
4

3.20 0.001 0.001 0.8

doi:10.1371/journal.pone.0138679.t005

Fig 8. Variation of [A � X]min (at maximum [A]bulk) in KcsA K+ channel simulation with “polarization”
charge (red = 0:0, blue = −0.1) as a function of cation diameter.

doi:10.1371/journal.pone.0138679.g008
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simulations except for their hydration energies. These energies are in inverse order to the

experimental selectivities, putting selectivities for these cations in the K+ channel beyond the

scope of our Hamiltonian. All this suggests that the non-electrostatic interaction between the

cation and carbonyl oxygens that line the SF are important for selectivity in the K+ channel.

Handling such interactions requires a more detailed treatment [55–57].

The simulation results for the KcsA model shows the limit of our Hamiltonian where vol-

ume, hydration and electrostatic interactions are assumed to be the most dominant terms and

therefore neglecting attractive non-electrostatic interactions. Our results show this assumption

is reasonable for ion channels that contain charged residues in the SF, such as Na+ and Ca2+

channels, but fails for the K+ channel which is without these charged residues. The results for

the Na+ and Ca2+ channels demonstrate that the dehydration model presented here, while sim-

ple, appears to capture the main features of dehydration important for selectivity within the

model.

Limitations

We have presented here a model that is specific to the needs of simulating the confined geome-

try of ion channel SFs within the CSC method. As in any model, ours has advantages and dis-

advantages. Some of these have been described in previous sections. In addition, a limiting

factor we have found are the limited number of published experimental values for partial

hydration free energies over the full range of cations used in biological studies (for example the

partial dehydration energies are not available for Cs+). Terms omitted from the current model

include non-electrostatic attractive forces, a large number of details of the protein structure

outside the SF, the bulk dynamics of the protein and the membrane voltage [58]. Explicit water

molecules are not included, thus the complex networks of water molecules seen in atomistic

simulations [59–66] are not reproduced. The model of partially hydrated cations as static

spheres of discrete sizes and without dipoles can obviously be augmented with further terms,

for example dynamic rearrangement of the waters of hydration affecting both the cluster shape

and electrostatic field could be added.

Concluding remarks

The augmented Hamiltonian leads to satisfactory results not only for Na+ and Ca2+ channels,

but also for K+ because the ion-water interactions are critical to ion channel simulations. Close

inspection of αhyd (Table 1) reveals that selectivity based purely on hydration could vary over at

least eight orders of magnitude. This implies that validation of the description of cation-water

interactions must be a primary requirement for all models.

The CSC Hamiltonian used in this paper complements other studies by highlighting and

isolating the most important contributions to selectivity. We confirm quantitatively and

through robust simulation the critical role hydration, volume exclusion and charge sites play in

selectivity, as first proposed by Eisenman [8, 9] in the 1960s. We have shown how partial dehy-

dration plays a critical role in Na+ selectivity for bacterial Na+ ion channels, as only suggested

by earlier studies. However, the physics included in the CSC model is insufficient to describe

selectivity in K+ channels, possibly due to the absence of attractive non-electrostatic interac-

tions in the current Hamiltonian.

We show that for selectivity, cation hydration states must to be taken into account for any

Hamiltonian when using atomistic detail in the SF. We have also shown that the CSC Hamilto-

nian is limited to pores where the electrostatic interactions dominate. Within this limitation,

the elements of the Hamiltonian isolated here gives us a robust basis to consider designing cat-

ion selective nanopores. Thus, not only does this model predict selectivity for a subset of
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biological cation channels, the model can also apply to the significant simplification required

in forward-engineering similar functionality.

Supporting Information
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and GHK equation. Section B, The mathematics of aggregating the results from sets of simula-
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B-factors into the harmonic potential terms used in the simulations. Section D, The pore geom-

etry and atom positions used in the simulations. Section E, Tables of complete raw population

data for Figs 5–7.
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