000256324 001__ 256324
000256324 005__ 20240709081956.0
000256324 037__ $$aFZJ-2015-06285
000256324 041__ $$aEnglish
000256324 1001_ $$0P:(DE-Juel1)158083$$aGuin, Marie$$b0$$eCorresponding author$$ufzj
000256324 1112_ $$aMaterials Science & Technology 2015$$cColumbus, Ohio$$d2015-10-04 - 2015-10-08$$wUSA
000256324 245__ $$aDevelopment of solid state electrolytes for lithium and sodium ion batteries
000256324 260__ $$c2015
000256324 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1456132547_16633$$xAfter Call
000256324 3367_ $$033$$2EndNote$$aConference Paper
000256324 3367_ $$2DataCite$$aOther
000256324 3367_ $$2ORCID$$aLECTURE_SPEECH
000256324 3367_ $$2DRIVER$$aconferenceObject
000256324 3367_ $$2BibTeX$$aINPROCEEDINGS
000256324 520__ $$aNASICON materials of the general formula AMM’(SiO4)x(PO4)3-x (A = Li or Na, M and M’ = Al, Ti, Sc or Zr) are investigated because they are promising solid-state electrolytes for Li- or Na-ion batteries. A novel sol-gel method was developed to prepare Li1.5Al0.5Ti1.5(PO4)3 in kg-level and at low cost with high phase purity. The lithium conductivity of the samples reached 5 × 10-4 S/cm at room temperature. Na3.4Sc2(SiO4)0.4(PO4)2.6 powders were synthesized via solid state reaction and the sodium conductivity of the samples at room temperature was  8 × 10-4 S/cm. These values place our materials among the best NASICON conductive materials reported to date. The impact of water on the measured conductivities and activation energies was also investigated for different NASICON compositions, as well as the stability of these electrolytes against electrode materials.
000256324 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000256324 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000256324 7001_ $$0P:(DE-Juel1)129628$$aMa, Qianli$$b1$$ufzj
000256324 7001_ $$0P:(DE-Juel1)164176$$aXu, Qi$$b2
000256324 7001_ $$0P:(DE-Juel1)156509$$aDashjav, Enkhtsetseg$$b3$$ufzj
000256324 7001_ $$0P:(DE-Juel1)161419$$aSierau, Jennyfer$$b4$$ufzj
000256324 7001_ $$0P:(DE-Juel1)129667$$aTietz, Frank$$b5$$ufzj
000256324 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b6$$ufzj
000256324 909CO $$ooai:juser.fz-juelich.de:256324$$pVDB
000256324 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158083$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000256324 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129628$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000256324 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156509$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000256324 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161419$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000256324 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129667$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000256324 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000256324 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000256324 9141_ $$y2015
000256324 920__ $$lyes
000256324 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000256324 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000256324 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x2
000256324 980__ $$aconf
000256324 980__ $$aVDB
000256324 980__ $$aI:(DE-Juel1)IEK-1-20101013
000256324 980__ $$aI:(DE-82)080011_20140620
000256324 980__ $$aI:(DE-Juel1)IEK-12-20141217
000256324 980__ $$aUNRESTRICTED
000256324 981__ $$aI:(DE-Juel1)IMD-4-20141217
000256324 981__ $$aI:(DE-Juel1)IMD-2-20101013
000256324 981__ $$aI:(DE-Juel1)IEK-12-20141217