001     256324
005     20240709081956.0
037 _ _ |a FZJ-2015-06285
041 _ _ |a English
100 1 _ |a Guin, Marie
|0 P:(DE-Juel1)158083
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Materials Science & Technology 2015
|c Columbus, Ohio
|d 2015-10-04 - 2015-10-08
|w USA
245 _ _ |a Development of solid state electrolytes for lithium and sodium ion batteries
260 _ _ |c 2015
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1456132547_16633
|2 PUB:(DE-HGF)
|x After Call
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a INPROCEEDINGS
|2 BibTeX
520 _ _ |a NASICON materials of the general formula AMM’(SiO4)x(PO4)3-x (A = Li or Na, M and M’ = Al, Ti, Sc or Zr) are investigated because they are promising solid-state electrolytes for Li- or Na-ion batteries. A novel sol-gel method was developed to prepare Li1.5Al0.5Ti1.5(PO4)3 in kg-level and at low cost with high phase purity. The lithium conductivity of the samples reached 5 × 10-4 S/cm at room temperature. Na3.4Sc2(SiO4)0.4(PO4)2.6 powders were synthesized via solid state reaction and the sodium conductivity of the samples at room temperature was 8 × 10-4 S/cm. These values place our materials among the best NASICON conductive materials reported to date. The impact of water on the measured conductivities and activation energies was also investigated for different NASICON compositions, as well as the stability of these electrolytes against electrode materials.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
700 1 _ |a Ma, Qianli
|0 P:(DE-Juel1)129628
|b 1
|u fzj
700 1 _ |a Xu, Qi
|0 P:(DE-Juel1)164176
|b 2
700 1 _ |a Dashjav, Enkhtsetseg
|0 P:(DE-Juel1)156509
|b 3
|u fzj
700 1 _ |a Sierau, Jennyfer
|0 P:(DE-Juel1)161419
|b 4
|u fzj
700 1 _ |a Tietz, Frank
|0 P:(DE-Juel1)129667
|b 5
|u fzj
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 6
|u fzj
909 C O |o oai:juser.fz-juelich.de:256324
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)158083
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129628
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)156509
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)161419
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129667
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)161591
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 1
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 2
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217
981 _ _ |a I:(DE-Juel1)IMD-2-20101013
981 _ _ |a I:(DE-Juel1)IEK-12-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21