001     256347
005     20240712084500.0
024 7 _ |2 doi
|a 10.1109/JPHOTOV.2015.2480230
024 7 _ |2 WOS
|a WOS:000364098400003
037 _ _ |a FZJ-2015-06306
041 _ _ |a English
082 _ _ |a 530
100 1 _ |0 P:(DE-Juel1)130282
|a Paetzold, Ulrich W.
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Nanoscale Investigation of Polarization-Dependent Light Coupling to Individual Waveguide Modes in Nanophotonic Thin-Film Solar Cells
260 _ _ |a New York, NY
|b IEEE
|c 2015
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1446108393_9941
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Nanophotonic light management concepts are essential building blocks of advanced thin-film solar cells. These concepts make use of light coupling to waveguide modes that are supported by the photoactive absorber material of the solar cell. In a recent study, we presented a new method based on scanning near-field optical microscopy that enables the direct nanoscale investigation of light coupling to an individual waveguide mode in a nanophotonic thin-film silicon solar cell. Making use of this method, we investigate in this contribution the polarization dependence of the light coupling to a waveguide mode. Based on this polarization dependence, we can attribute the investigated waveguide mode to a transverse electric mode. Moreover, we identify the grating vector, which is responsible for the light coupling to the investigated waveguide mode in the nanopatterned thin-film silicon solar cell.
536 _ _ |0 G:(DE-HGF)POF3-121
|a 121 - Solar cells of the next generation (POF3-121)
|c POF3-121
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-Juel1)130264
|a Lehnen, Stephan
|b 1
|u fzj
700 1 _ |0 P:(DE-Juel1)130219
|a Bittkau, Karsten
|b 2
|u fzj
700 1 _ |0 P:(DE-Juel1)143905
|a Rau, Uwe
|b 3
|u fzj
700 1 _ |0 P:(DE-Juel1)130225
|a Carius, Reinhard
|b 4
|u fzj
773 _ _ |0 PERI:(DE-600)2585714-9
|a 10.1109/JPHOTOV.2015.2480230
|g Vol. 5, no. 6, p. 1523 - 1527
|n 6
|p 1523 - 1527
|t IEEE journal of photovoltaics
|v 5
|x 2156-3381
|y 2015
856 4 _ |u https://juser.fz-juelich.de/record/256347/files/07296587.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:256347
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130282
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130264
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130219
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)143905
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130225
|a Forschungszentrum Jülich GmbH
|b 4
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-121
|1 G:(DE-HGF)POF3-120
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Erneuerbare Energien
|v Solar cells of the next generation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b IEEE J PHOTOVOLT : 2013
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)1160
|2 StatID
|a DBCoverage
|b Current Contents - Engineering, Computing and Technology
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21