001     256352
005     20240712100948.0
024 7 _ |2 doi
|a 10.5194/gmd-8-2299-2015
024 7 _ |2 ISSN
|a 1991-959X
024 7 _ |2 ISSN
|a 1991-9603
024 7 _ |2 Handle
|a 2128/9378
024 7 _ |2 WOS
|a WOS:000358917100022
037 _ _ |a FZJ-2015-06311
082 _ _ |a 910
100 1 _ |0 P:(DE-HGF)0
|a Katragkou, E.
|b 0
|e Corresponding author
245 _ _ |a Evaluation of near-surface ozone over Europe from the MACC reanalysis
260 _ _ |a Katlenburg-Lindau
|b Copernicus
|c 2015
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1447339288_29699
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
520 _ _ |a This work is an extended evaluation of near-surface ozone as part of the global reanalysis of atmospheric composition, produced within the European-funded project MACC (Monitoring Atmospheric Composition and Climate). It includes an evaluation over the period 2003–2012 and provides an overall assessment of the modeling system performance with respect to near-surface ozone for specific European subregions. Measurements at rural locations from the European Monitoring and Evaluation Program (EMEP) and the European Air Quality Database (AirBase) were used for the evaluation assessment. The fractional gross error of near-surface ozone reanalysis is on average 24 % over Europe, the highest found over Scandinavia (27 %) and the lowest over the Mediterranean marine stations (21 %). Near-surface ozone shows mostly a negative bias in winter and a positive bias during warm months. Assimilation reduces the bias in near-surface ozone in most of the European subregions – with the exception of Britain and Ireland and the Iberian Peninsula and its impact is mostly notable in winter. With respect to the seasonal cycle, the MACC reanalysis reproduces the photochemically driven broad spring-summer maximum of surface ozone of central and south Europe. However, it does not capture adequately the early spring peak and the shape of the seasonality at northern and north-eastern Europe. The diurnal range of surface ozone, which is as an indication of the local photochemical production processes, is reproduced fairly well, with a tendency for a small overestimation during the warm months for most subregions (especially in central and southern Europe). Possible reasons leading to discrepancies between the MACC reanalysis and observations are discussed.
536 _ _ |0 G:(DE-HGF)POF3-211
|a 211 - Global Processes: Integrated Monitoring and Modelling (POF3-211)
|c POF3-211
|f POF III
|x 0
536 _ _ |0 G:(DE-HGF)POF3-511
|a 511 - Computational Science and Mathematical Methods (POF3-511)
|c POF3-511
|f POF III
|x 1
536 _ _ |0 G:(EU-Grant)633080
|a MACC-III - Monitoring Atmospheric Composition and Climate -III (633080)
|c 633080
|f H2020-Adhoc-2014-20
|x 2
536 _ _ |0 G:(DE-HGF)POF3-243
|a 243 - Tropospheric trace substances and their transformation processes (POF3-243)
|c POF3-243
|f POF III
|x 3
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Zanis, P.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Tsikerdekis, A.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Kapsomenakis, J.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Melas, D.
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Eskes, H.
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Flemming, J.
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Huijnen, V.
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Inness, A.
|b 8
700 1 _ |0 P:(DE-Juel1)6952
|a Schultz, Martin
|b 9
|u fzj
700 1 _ |0 P:(DE-Juel1)3709
|a Stein, O.
|b 10
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Zerefos, C. S.
|b 11
773 _ _ |0 PERI:(DE-600)2456725-5
|a 10.5194/gmd-8-2299-2015
|g Vol. 8, no. 7, p. 2299 - 2314
|n 7
|p 2299 - 2314
|t Geoscientific model development
|v 8
|x 1991-9603
|y 2015
856 4 _ |u https://juser.fz-juelich.de/record/256352/files/gmd-8-2299-2015.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:256352
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |0 I:(DE-HGF)0
|6 0000-0002-8743-4455
|a External Institute
|b 5
|k Extern
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)3709
|a Forschungszentrum Jülich GmbH
|b 10
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-211
|1 G:(DE-HGF)POF3-210
|2 G:(DE-HGF)POF3-200
|a DE-HGF
|l Geosystem - Erde im Wandel
|v Global Processes: Integrated Monitoring and Modelling
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
913 1 _ |0 G:(DE-HGF)POF3-511
|1 G:(DE-HGF)POF3-510
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|v Computational Science and Mathematical Methods
|x 1
|l Supercomputing & Big Data
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |0 G:(DE-HGF)POF3-243
|1 G:(DE-HGF)POF3-240
|2 G:(DE-HGF)POF3-200
|a DE-HGF
|l Atmosphäre und Klima
|v Tropospheric trace substances and their transformation processes
|x 2
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2015
915 _ _ |0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
|a Creative Commons Attribution CC BY 3.0
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b GEOSCI MODEL DEV : 2014
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-3-20101013
981 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21