000256363 001__ 256363
000256363 005__ 20240625095124.0
000256363 0247_ $$2Handle$$a2128/9374
000256363 037__ $$aFZJ-2015-06322
000256363 1001_ $$0P:(DE-HGF)0$$aFinnerty, J. J.$$b0$$eCorresponding author
000256363 1112_ $$aPAM SoftComp Topical Workshop: Proteins & Nanoparticles Membranes 2014$$cJülich$$d2014-10-19 - 2014-10-22$$wGermany
000256363 245__ $$aIon Selectivity in Voltage-gated Biological Ion Channels
000256363 260__ $$c2014
000256363 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1446557508_12655$$xOther
000256363 3367_ $$033$$2EndNote$$aConference Paper
000256363 3367_ $$2DataCite$$aOther
000256363 3367_ $$2ORCID$$aLECTURE_SPEECH
000256363 3367_ $$2DRIVER$$aconferenceObject
000256363 3367_ $$2BibTeX$$aINPROCEEDINGS
000256363 520__ $$aWe demonstrate that a combination of calculating the exact electrostatic potential and approximate volume exclusion within the sub-nanometer selectivity filter of a biological ion channel is critical for estimating the selectivity of the ion channel. Biological membranes separate solutions of different ionic composition which can lead to significant transmembrane voltages and chemical potentials. Ion selective biological ion channels are used by nature to manage these potentials. The high charge density within these ion channels requires computation of the electrostatic potential to consider induced charges on the dielectric boundary between the aqueous solution and the protein/membrane. Here, this is efficiently achieved by constraining the dielectric boundary to be constant, generating a set of surface elements, and pre-calculating a set of simultaneous equations that provides the induced charge of these elements in response to the external electric field.
000256363 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000256363 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x1
000256363 7001_ $$0P:(DE-Juel1)161525$$aPeyser, Alexander$$b1$$ufzj
000256363 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b2$$ufzj
000256363 8564_ $$uhttps://juser.fz-juelich.de/record/256363/files/jfinnerty_pam_2014-1.pdf$$yOpenAccess
000256363 909CO $$ooai:juser.fz-juelich.de:256363$$pVDB$$pdriver$$popen_access$$popenaire
000256363 9101_ $$0I:(DE-588b)1026307295$$6P:(DE-HGF)0$$aGerman Research School for Simulation Sciences$$b0$$kGRS Aachen
000256363 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161525$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000256363 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000256363 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000256363 9141_ $$y2015
000256363 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000256363 920__ $$lyes
000256363 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000256363 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000256363 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x2
000256363 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x3
000256363 9801_ $$aUNRESTRICTED
000256363 9801_ $$aFullTexts
000256363 980__ $$aconf
000256363 980__ $$aVDB
000256363 980__ $$aUNRESTRICTED
000256363 980__ $$aI:(DE-Juel1)JSC-20090406
000256363 980__ $$aI:(DE-82)080012_20140620
000256363 980__ $$aI:(DE-Juel1)IAS-5-20120330
000256363 980__ $$aI:(DE-Juel1)INM-9-20140121
000256363 981__ $$aI:(DE-Juel1)IAS-5-20120330
000256363 981__ $$aI:(DE-Juel1)INM-9-20140121