000256374 001__ 256374
000256374 005__ 20220930130049.0
000256374 0247_ $$2doi$$a10.1128/AEM.02113-15
000256374 0247_ $$2ISSN$$a0003-6919
000256374 0247_ $$2ISSN$$a0099-2240
000256374 0247_ $$2ISSN$$a1098-5336
000256374 0247_ $$2WOS$$aWOS:000363463800017
000256374 0247_ $$2altmetric$$aaltmetric:4478713
000256374 0247_ $$2pmid$$apmid:26341203
000256374 037__ $$aFZJ-2015-06331
000256374 041__ $$aEnglish
000256374 082__ $$a570
000256374 1001_ $$0P:(DE-Juel1)157678$$aKallscheuer, Nicolai$$b0$$eCorresponding author
000256374 245__ $$aSingle-Domain Peptidyl-Prolyl cis / trans Isomerase FkpA from Corynebacterium glutamicum Improves the Biomass Yield at Increased Growth Temperatures
000256374 260__ $$aWashington, DC [u.a.]$$bSoc.$$c2015
000256374 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1457697479_316
000256374 3367_ $$2DataCite$$aOutput Types/Journal article
000256374 3367_ $$00$$2EndNote$$aJournal Article
000256374 3367_ $$2BibTeX$$aARTICLE
000256374 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000256374 3367_ $$2DRIVER$$aarticle
000256374 500__ $$aBiotechnologie 1
000256374 520__ $$aPeptidyl-prolyl cis/trans isomerases (PPIases) catalyze the rate-limiting protein folding step at peptidyl bonds preceding proline residues and were found to be involved in several biological processes, including gene expression, signal transduction, and protein secretion. Representative enzymes were found in almost all sequenced genomes, including Corynebacterium glutamicum, a facultative anaerobic Gram-positive and industrial workhorse for the production of amino acids. In C. glutamicum, a predicted single-domain FK-506 (tacrolimus) binding protein (FKBP)-type PPIase (FkpA) is encoded directly downstream of gltA, which encodes citrate synthase (CS). This gene cluster is also present in other Actinobacteria. Here we carried out in vitro and in vivo experiments to study the function and influence of predicted FkpA in C. glutamicum. In vitro, FkpA indeed shows typical PPIase activity with artificial substrates and is inhibited by FK-506. Furthermore, FkpA delays the aggregation of CS, which is also inhibited by FK-506. Surprisingly, FkpA has a positive effect on the activity and temperature range of CS in vitro. Deletion of fkpA causes a 50% reduced biomass yield compared to that of the wild type when grown at 37°C, whereas there is only a 10% reduced biomass yield at the optimal growth temperature of 30°C accompanied by accumulation of 7 mM l-glutamate and 22 mM 2-oxoglutarate. Thus, FkpA may be exploited for improved product formation in biotechnical processes. Comparative transcriptome analysis revealed 69 genes which exhibit ≥2-fold mRNA level changes in C. glutamicum ΔfkpA, giving insight into the transcriptional response upon mild heat stress when FkpA is absent.
000256374 536__ $$0G:(DE-HGF)POF3-581$$a581 - Biotechnology (POF3-581)$$cPOF3-581$$fPOF III$$x0
000256374 588__ $$aDataset connected to CrossRef
000256374 7001_ $$0P:(DE-Juel1)128943$$aBott, Michael$$b1$$ufzj
000256374 7001_ $$0P:(DE-Juel1)128998$$avan Ooyen, Jan$$b2
000256374 7001_ $$0P:(DE-Juel1)128982$$aPolen, Tino$$b3$$eCorresponding author
000256374 773__ $$0PERI:(DE-600)1478346-0$$a10.1128/AEM.02113-15$$gVol. 81, no. 22, p. 7839 - 7850$$n22$$p7839 - 7850$$tApplied and environmental microbiology$$v81$$x1098-5336$$y2015
000256374 8564_ $$uhttps://juser.fz-juelich.de/record/256374/files/Appl.%20Environ.%20Microbiol.-2015-Kallscheuer-7839-50.pdf$$yRestricted
000256374 8767_ $$92015-09-21$$d2015-09-29$$ePage charges$$jZahlung erfolgt$$pAEM02113-15$$zUSD 1620,-
000256374 8767_ $$92015-09-21$$d2015-09-29$$eOther$$jZahlung erfolgt$$pAEM02113-15$$zUSD 285,-
000256374 909CO $$ooai:juser.fz-juelich.de:256374$$pOpenAPC$$pVDB$$popenCost
000256374 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157678$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000256374 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128943$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000256374 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128982$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000256374 9131_ $$0G:(DE-HGF)POF3-581$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vBiotechnology$$x0
000256374 9141_ $$y2015
000256374 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000256374 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000256374 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000256374 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL ENVIRON MICROB : 2014
000256374 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000256374 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000256374 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000256374 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000256374 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000256374 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000256374 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000256374 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000256374 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000256374 920__ $$lyes
000256374 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000256374 980__ $$ajournal
000256374 980__ $$aVDB
000256374 980__ $$aI:(DE-Juel1)IBG-1-20101118
000256374 980__ $$aUNRESTRICTED
000256374 980__ $$aAPC