000256395 001__ 256395
000256395 005__ 20250129094220.0
000256395 0247_ $$2doi$$a10.1002/pssa.201532589
000256395 0247_ $$2ISSN$$a0031-8965
000256395 0247_ $$2ISSN$$a1521-396X
000256395 0247_ $$2ISSN$$a1862-6300
000256395 0247_ $$2ISSN$$a1862-6319
000256395 0247_ $$2WOS$$aWOS:000372719800029
000256395 0247_ $$2altmetric$$aaltmetric:21827546
000256395 037__ $$aFZJ-2015-06346
000256395 041__ $$aEnglish
000256395 082__ $$a530
000256395 1001_ $$0P:(DE-HGF)0$$aSesselmann, Andreas$$b0$$eCorresponding author
000256395 245__ $$aNeutron diffraction and thermoelectric properties of indium filled In x Co 4 Sb 12 ( x  = 0.05, 0.2) and indium cerium filled Ce 0.05 In 0.1 Co 4 Sb 12 skutterudites
000256395 260__ $$aWeinheim$$bWiley-VCH$$c2015
000256395 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1457964955_8498
000256395 3367_ $$2DataCite$$aOutput Types/Journal article
000256395 3367_ $$00$$2EndNote$$aJournal Article
000256395 3367_ $$2BibTeX$$aARTICLE
000256395 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000256395 3367_ $$2DRIVER$$aarticle
000256395 520__ $$aThe thermoelectric properties on polycrystalline single (In) and double filled (Ce, In) skutterudites are characterized between 300 and 700 K. Powder neutron diffraction measurements of the skutterudite compositions InxCo4Sb12 (x = 0.05, 0.2) and Ce0.05In0.1Co4Sb12 as a function of temperature (12–300 K) were carried out, which gives more insight into the structural data of single and double-filled skutterudites. Results show that due to the annealing treatment, a Sb deficiency is detectable and thus verifies defects at the Sb lattice site of the skutterudite. Furthermore, we show by electron microprobe analysis that a considerable amount of indium is lost during synthesis and post-processing for the single indium filled samples, but not for the double cerium and indium skutterudite sample. In our experiments, the double-filled skutterudite is superior to the single-filled skutterudite composition due to a higher charge carrier density, a comparable lattice thermal resistivity, and a higher density of states effective mass. Furthermore, we obtained a significantly higher Einstein temperature for the double-filled skutterudite composition in comparison to the single-filled species, which reflects the high sensitivity due to filling of the void lattice position within the skutterudite crystal.
000256395 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000256395 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x1
000256395 536__ $$0G:(DE-HGF)POF3-6212$$a6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)$$cPOF3-621$$fPOF III$$x2
000256395 536__ $$0G:(DE-HGF)POF3-6213$$a6213 - Materials and Processes for Energy and Transport Technologies (POF3-621)$$cPOF3-621$$fPOF III$$x3
000256395 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x4
000256395 588__ $$aDataset connected to CrossRef
000256395 7001_ $$0P:(DE-Juel1)144500$$aKlobes, Benedikt$$b1
000256395 7001_ $$0P:(DE-HGF)0$$aDasgupta, Titas$$b2
000256395 7001_ $$0P:(DE-HGF)0$$aGourdon, Olivier$$b3
000256395 7001_ $$0P:(DE-Juel1)130706$$aHermann, Raphael$$b4
000256395 7001_ $$0P:(DE-HGF)0$$aMueller, Eckhard$$b5
000256395 773__ $$0PERI:(DE-600)1481091-8$$a10.1002/pssa.201532589$$gp. n/a - n/a$$n3$$p766–773$$tPhysica status solidi / A$$v213$$x1862-6300$$y2015
000256395 8564_ $$uhttps://juser.fz-juelich.de/record/256395/files/Sesselmann_et_al-2015-physica_status_solidi_%28a%29.pdf$$yRestricted
000256395 8564_ $$uhttps://juser.fz-juelich.de/record/256395/files/Sesselmann_et_al-2015-physica_status_solidi_%28a%29.gif?subformat=icon$$xicon$$yRestricted
000256395 8564_ $$uhttps://juser.fz-juelich.de/record/256395/files/Sesselmann_et_al-2015-physica_status_solidi_%28a%29.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000256395 8564_ $$uhttps://juser.fz-juelich.de/record/256395/files/Sesselmann_et_al-2015-physica_status_solidi_%28a%29.jpg?subformat=icon-180$$xicon-180$$yRestricted
000256395 8564_ $$uhttps://juser.fz-juelich.de/record/256395/files/Sesselmann_et_al-2015-physica_status_solidi_%28a%29.jpg?subformat=icon-640$$xicon-640$$yRestricted
000256395 8564_ $$uhttps://juser.fz-juelich.de/record/256395/files/Sesselmann_et_al-2015-physica_status_solidi_%28a%29.pdf?subformat=pdfa$$xpdfa$$yRestricted
000256395 909CO $$ooai:juser.fz-juelich.de:256395$$pVDB
000256395 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000256395 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS STATUS SOLIDI A : 2014
000256395 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000256395 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000256395 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000256395 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000256395 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000256395 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000256395 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000256395 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000256395 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000256395 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144500$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000256395 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130706$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000256395 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000256395 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x1
000256395 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000256395 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6213$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x3
000256395 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x4
000256395 9141_ $$y2016
000256395 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
000256395 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
000256395 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000256395 980__ $$ajournal
000256395 980__ $$aVDB
000256395 980__ $$aUNRESTRICTED
000256395 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000256395 980__ $$aI:(DE-Juel1)PGI-4-20110106
000256395 980__ $$aI:(DE-82)080009_20140620
000256395 981__ $$aI:(DE-Juel1)JCNS-2-20110106
000256395 981__ $$aI:(DE-Juel1)PGI-4-20110106