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James W. Elkins
Climate Monitoring and Diagnostics Laboratory, National Oceanic and Atmospheric

Administration, Boulder, CO, USA

David Fahey, Peter Popp

Aeronomy Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO,

USA

Short title: WEAK IMPACT OF MIXING ON CHLORINE DEACTIVATION DURING

SOLVE/THESEO-2000 VERSION FROM May 8, 2002



2

Abstract. During the second and third segment of the SOLVE campaign in February and

March 2000 the Arctic polar vortex had started to be disturbed by planetary waves and upper

stratospheric warming events. The perturbations of the vortex were associated with transport

of air from low and mid-latitudes into the polar region. Filaments with a lifetime exceeding 2

weeks were generated in regions of strong baroclinicity and peeled off the vortex edge.

The Chemical Lagrangian Model of the Stratosphere (CLaMS) is used for the

interpretation of filamentary structures in chemical tracer fields measured on board of the ER-2

during the March flights across the edge of the polar vortex. Both the mixing and the impact

of mixing on the chemistry are considered. The isentropic version of CLaMS is initialized on

February, 10, at 4 isentropic levels: θ � 400, 425, 450, and 475 K.

A comparison of the measured CH4/Halon-1211 correlation curves and time series

with corresponding CLaMS results obtained for spatial resolution of about 45 km indicates

weak mixing between vortex and mid-latitudes air without pronounced anomalous mixing

events. Thus, the Arctic vortex in the altitude range 400-475 K was well-isolated during the

considered period without significant mass exchange across the vortex edge.

The mixing intensity in CLaMS is controlled by the finite time Lyapunov exponent λ

measuring the deformation rate of the horizontal wind and switching on mixing in the flow

regions where λ exceeds a critical value λc. The CLaMS simulations suggest a temporally

and spatially inhomogeneous mixing in the lower stratosphere with a lateral (across the wind)

effective diffusion coefficient of the order 103 m2s
� 1.

The amount of ClONO2 formed due to chemistry induced by mixing of the activated

vortex air with NOx-rich mid-latitude air does not exceed 3%. The impact of mixing on the

accumulated ozone loss is less than 1%. The ClONO2-collar observed during the flight on

March 11 can be understood as a result of deactivation of ClOx through the NOx produced

owing to the chemical decomposition of HNO3 without a significant contribution of mixing

with NOx-rich mid-latitude air.



3

1. Introduction

Mixing in the stratosphere can be understood as the last step in the scale cascade towards

smaller scales driven by the quasi-horizontal stirring of the large scale flow. Stratospheric

turbulence is mostly weak and occurs intermittently, as layerwise patches, in regions of strong

wind shear and breaking gravity waves [Nastrom et al., 1987]. This is mainly due to the stable

stratification of the stratosphere with large bulk Richardson numbers that counteracts vertical

motions of the air.

The pre-dominance of chaotic 2d advection in stratospheric transport becomes obvious

by the occurrence of laminar structures with typical horizontal and vertical scales of 100 and

1 km, respectively [e.g. Orsolini et al., 1998]. Reid and Vaughan [1991] conjecture that such

structures originate through differential advection in zones of strong wind shear. Using a

linear and horizontal approximation for the stratospheric flow, i.e.

�
u � v � w � �

�
shx ��� shy � svz � 0 � (1)

where
�
x � y � z � are Cartesian coordinates (z - vertical), the horizontal strain sh and the vertical

shear sv quantify the strength of the sheared zones: Typically, sv and sh amount to 10
� 3 s

� 1

[Dürbeck and Gerz, 1996] and 10
� 6 s

� 1 [Tan et al., 1998], respectively.

To quantify mixing intensity in the stratosphere, diffusion coefficients based on the

Fickian concept of mixing (i.e. mass flux is proportional to the tracer gradient ) can be used

with vertical diffusivity Dv of the order 0.1 m2 s
� 1 [Woodman and Rastogi, 1984] or smaller

[Balluch and Haynes, 1997] and horizontal diffusivity Dh of the order 10 m2 s
� 1 near the

tropopause [Schumann et al., 1995].

Inaccurate representation of mixing is potentially an important source of errors in the

predictions of photochemical transport models [Edouard et al., 1996; Searle et al., 1998a, b].

Whereas the process of physical mixing occurs in the stratosphere on vertical scales of around

100 m and horizontal scales of the order 10 km [Balluch and Haynes, 1997], the concept of

effective diffusion can be applied to represent vertical mixing processes in two-dimensional
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(e.g. isentropic) models of the stratosphere [Tan et al., 1998]. However, there is a significant

uncertainty in the magnitude of the effective diffusivity mainly due to uncertainties in the

intensity of the vertical mixing [Balluch and Haynes, 1997].

Here, the Chemical Lagrangian Model of the Stratosphere (CLaMS) [McKenna et al.,

2001b, a] is applied for the analysis of filamentary structures in both long-lived (CH4,

Halon-1211) and chemically active species (ClONO2, and NO) measured on board of the

ER-2 during flights across the filaments near the edge of the polar vortex in March 2000. One

of the advantages of CLaMS is that it allows to simulate stratospheric mixing in terms of an

adjustable mixing intensity induced by the horizontal deformation of the flow and measured

in terms of the finite-time Lyapunov exponent λ. Taking into account that sufficiently large

values of λ lead to strong mixing events [Ngan and Shepherd, 1999; Hu and Pierrehumbert,

2001], we quantify in this paper the intensity of stratospheric mixing in terms of the effective

diffusivity and study its influence on the chemical recovery over the course of the second and

third segment of the SOLVE campaign in February and March 2000.

The paper is structured as follows: In the next section, we briefly describe the

measurements of the chemical species and discuss the meteorological situation during the

considered period. Comparing the ER-2 data with CLaMS model results, we quantify in

section 3 the magnitude of the effective diffusivity and discuss in section 4 the impact of

mixing on the chlorine deactivation within the filaments. Section 5 discusses the results and

Section 6 draws the conclusions.

2. Stratospheric meteorology and observations of chemical species

In this paper, the tracer data sampled with ACATS-IV instrument are considered. Among

others CH4 and Halon-1211 time series were measured using the gas chromatography

techniques with the precision and accuracy smaller than 1% and 4%, respectively, and with

frequency of about 70 s [Elkins et al., 1993; Romashkin et al., 2001]. Further, to study the

influence of mixing on the chlorine deactivation, ClONO2 and NO time series are taken into
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account. The concentration of ClONO2 is measured with an accuracy and detection limit

of � 20% and 10 pptv, respectively, in 35 seconds [Stimpfle et al., 1999]. Detection of NO

is accomplished by direct NO/O3 chemiluminescence at a frequency of 1 Hz [Fahey et al.,

1989].

During the second and third segment of the SOLVE campaign in February and March

2000 the lower stratospheric vortex was disturbed by strong planetary waves with zonal

wave number 1 and 2 [Manney and Sabutis, 2000; Sabutis and Manney, 2000]. Interaction

with blocking high pressure systems in the upper troposphere and with the Aleutian high led

to the generation of long stretched filaments being drawn off the Arctic vortex around the

anticyclones. Owing to their large horizontal and vertical extension some of these air masses

maintained a strong horizontal PV and tracer gradients for several days. Similar mechanisms

led to the generation of filaments of extra-vortex air entering the vortex (see Fig. 1). Figure 1.

Within the considered period clear signatures of filamentation were measured during

two ER-2 flights on March 7 and 11, 2000. The flight on March 7 encountered a filament

of extra-vortex air that had entered the vortex three days before over Northern Siberia. The

filament was then advected inside the vortex arriving north of Spitsbergen on March 7 when

the measurement took place. The filament observed by the ER-2 on March 11 originated from

air masses being drawn off the vortex at the end of February. After having been stretched and

wrapped around the vortex for almost two weeks, this filament was moving parallel to the

vortex edge when it was encountered over Scandinavia. The flight on March 11 crossed the

vortex edge and the filament twice on the 450 K isentropic surface.

To study the 3d structure of these filaments, RDF (Reverse-Domain-Filling, [Sutton et al.,

1994]) calculations were conducted (see Fig. 2) based on backward trajectory calculations

for air parcels (APs) initialized on a uniformly gridded vertical surface (left) or along a flight

track (right). For a specific time in the past (here, 15 or 30 days) PV is mapped to the initial Figure 2.

parcel locations thereby creating a high-resolution PV field in the domain of interest at the

time of observation. The results suggest that some of the small-scale structures observed in the
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CH4 and Halon-1211 time series near the edge of the Arctic vortex can be interpreted as cuts

through sheeted laminar structures of vortex air. The tracer gradients across such structures

are a measure of the intensity of the stratospheric mixing. They will be compared in the next

section with the corresponding quantities derived from CLaMS model simulations.

Studying the impact of mixing on nonlinear tracer-tracer correlations inside the vortex

Plumb et al. [2000] suggested that mixing across the vortex edge may lead to anomalous

tracer-tracer relationships. An example of nonlinear tracer-tracer relationship is shown in

Fig. 3 where CH4/Halon-1211 correlations derived from all ER-2 flights between January 6,

and March 16 are plotted. Figure 3.

Comparing the data at the beginning (from 6.01 to 3.02, yellow triangles fitted by the blue

line) with observations made at the end of this period (from 26.02 to 16.03, pink diamonds

fitted by the black line) indicates only a small change of the CH4/Halon-1211 correlation.

Anomalous mixing events [Waugh et al., 1997; Plumb et al., 2000] significantly disrupting

the original CH4/Halon-1211 correlation through long-range (in tracer space) mass exchange

between the air parcels (i.e. along dashed lines in Fig. 3) were not observed.

Thus, between the beginning of January and mid of March, tracer transport in the region

covered by the ER-2 flights, was dominated by advection rather than mixing indicating a

well-isolated vortex. This property of the observed CH4/Halon-1211 correlation constrains

the possible intensity of mixing and, consequently, allows to optimize the mixing parameters

in CLaMS. We discuss this issue in the next section.

3. CLaMS tracer simulations

Initialization

Studying stratospheric transport on a timescale of a few weeks we consider CH4 and

Halon-1211 as long-lived atmospheric species. Using the 2d isentropic version of CLaMS

[McKenna et al., 2001b], we investigate the transport of these species in the high latitudes
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between February 10 and March 15, 2000. Isentropic transport driven by ECMWF winds

at four isentropic levels: θ � 400, 425, 450, and 475 K is considered. The isentropic

approximation is justified by low total vertical displacement ∆θ � 25 K due to diabatic effects

during the considered period (see Fig. 2, bottom right) calculated using a radiation module

[Zhong and Haigh, 1995] based on the Morcrette [1991] scheme.

At each θ level air parcels (APs) were defined that cover the northern hemisphere with

high and low horizontal resolution r0 north- and southward of 30 � N, respectively, r0 being

defined as a mean distance between APs. In the high resolution region, several cases with

different spatial resolution are considered with r0
� 30, 45, 60, 100, and 200 km. In the low

resolution region, for all cases a constant value r0
� 200 km is assumed.

The initial distribution of CH4 on February 10 is derived from HALOE and ER-2 data

(ACATS) using the PV-tracer correlation shown in Figure 5 in Grooß et al. [2001]. The

Halon-1211 mixing ratios are initialized by use of the nonlinear relationship derived from

ER-2 data observed between January 6, and February 3 (blue curve in Fig. 3).

Pure advection studies (CLaMS without mixing)

Before discussing CLaMS transport where advection and mixing are coupled, it is

instructive to consider pure advective transport of CH4 that is transport based solely on

trajectory calculations. The initial positions of APs that characterize a certain spatial resolution

r0 as described above are transported from February, 10 2000 to March 11, 2000, 12 UTC,

using isentropic forward trajectories driven by ECMWF winds. For comparison with ER-2

observations during the flight on March 11, we transform the (asynoptic) ER-2 flight track to

the synoptic time, March 11, 12 UTC, using forward or backward trajectories and interpolate

the results of the simulated CH4 onto the synoptic flight positions. The results of such a

procedure are shown in Fig. 4 where two methods are used: by taking into account the mixing Figure 4.

ratio of only the nearest neighbor to the measured AP (green) and by taking into account all

next neighbors determined by use of the Delaunay triangulation (red). In the second case a
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weighted interpolation is applied, where a neighbor contributes the more strongly to the result

the closer it lies to the considered point. In the first case we approximate the observed mixing

ratios by the value of the next neighbor and avoid therefore any kind of numerical diffusion

(mixing) due to interpolation.

The comparison of the measured ACATS CH4 time series (spatial resolution � 12 km)

with the results of the pure advective transport shows the following features: To resolve the

filamentary structure of the vortex edge (dashed regions in Fig. 4) spatial resolution r0 of

the order 100 km or higher is necessary. For all considered values of r0 the results depend

on the method of interpolation. Increasing the spatial resolution r0 leads to an increase of

frequency (not amplitude !) of fluctuations in the simulated time series that is not observed in

the ACATS data although their spatial resolution is higher (12 km) than the resolution r0 of the

considered tracer advection studies. This effect can be quantified by comparing the integrated

variability of the observed ( fexp) and simulated ( fs) CH4 time series with n data points. In

Table 1, the factor γ � ∆s
�
∆exp with ∆l

� ∑n
i � 1 � fl

�
ti � 1 � � fl

�
ti � � , l � s � exp is determined for Table 1.

the nearest neighbor approximation (green curves in Fig. 4). Note that one expects γ � 1 if the

observed and simulated tracer variability is the same. The γ values in Table 1 increase with

the spatial resolution of the model and indicate some “unphysical” tracer fluctuations in pure

advection studies with spatial resolution higher then 60 km. The effect of a “too patchy” tracer

distribution can also be seen in the 2d isentropic distribution shown in top panels of Fig. 6

where results of a pure advective transport of CH4 at 450 K are shown.

We interpret these “too patchy” distributions or “unphysical” fluctuations in the simulated

time series as a result of missing mixing in the pure advection studies. The next subsection

discusses how the CLaMS mixing scheme overcomes this shortcoming using the concept of a

dynamically adaptive grid.
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CLaMS with variable mixing

Within CLaMS, the mixing of different air masses is determined through a controlled

interaction between nearest neighbors identified by Delaunay triangulation. After each

advection step ∆t mixing between nearest neighbors occurs using the dynamically adaptive

grid (for details see McKenna et al. [2001b]). Typical values of ∆t vary between 6 and 48

hours. For given values of the spatial resolution r0 and the time step ∆t, the intensity of mixing

is controlled by a critical Lyapunov exponent λc. Mixing in the model occurs only when the

finite time Lyapunov exponent λ exceeds a critical value λc corresponding to a sufficiently

large separation or clustering of the neighboring APs.

Thus, assuming a constant spatial resolution r0 and a constant time step ∆t, mixing

intensity can be varied in terms of the critical Lyapunov exponent λc. The corresponding

(effective) diffusion coefficients D � �
λ � describe the deformation-dependent mass exchange

along ( � ) and across ( � ) the wind direction and can be estimated as [McKenna et al., 2001b]:

D � �
λ � �

���� ���
r2
0

4∆t exp � 2λ∆t λ � λc

0 λ � λc �
(2)

In the polar regions with a circumpolar flow, D � �
λ � describes zonal and meridional mixing,

respectively. To quantify mixing, we approximate relation (2) for λ � λc as Dc� � D � �
λc � .

The values of Dc� for different configurations of the model parameters r0, ∆t and λc are shown

in Fig. 5. Figure 5.

To study the impact of mixing on the distribution of chemically passive and active

species we start from the pure advection case described in the previous section and increase

the mixing intensity in the model by varying the model parameters r0, ∆t, λc and thus the

corresponding diffusion coefficients Dc� along the black path in the bottom of Fig. 5. For two

model resolution r0
� 45 km (highest CLaMS resolution for tracer transport studies) and 100

km (highest CLaMS resolution with full chemistry, see Grooß et al. [2001]), we start at point

a) (no mixing), then move to points b) (mixing too small), c), d), and finally reach the point e)
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(mixing too high). The significant increase of mixing along this path is due to increase of Dc
�

describing the lateral effective diffusivity and, consequently, smearing out the tracer gradients

across the vortex edge. The corresponding values of Dc
� are shown in Table 2. Table 2.

Comparing the simulated time series along the ER-2 track and the CH4/Halon-1211

correlations with corresponding experimental data, we decide that case c) leads to a best

agreement between the model and observations. In Figure 6, CLaMS CH4 distributions with

r0
� 45 km are shown at θ � 450 K for March 7 and for increasing mixing intensities changing

from a) to e) along the black path in Fig. 5. Figure 6.

To find the most appropriate choice of the mixing parameters we consider now the

CH4/Halon-1211 correlations derived from CLaMS simulations with different mixing

intensities. The results calculated for March 11 are plotted in Fig. 7. Here, we take into Figure 7.

account all CLaMS APs northward 30 � N which are bounded by two envelopes: the outer one

(blue solid line) denotes the CH4/Halon-1211 correlation used for initialization (see Fig. 3)

and the inner one (blue dashed line) describing the CLaMS points with anomalous mixing. A

polynomial fit through these points is given by the red line. Note that stronger mixing (case

e) implicates more compact tracer-tracer correlation. On the other hand, a weak (incomplete)

mixing leads to a stronger departure of some mixed APs from the canonical relationship (blue

dashed line in case c) [c.f. Plumb et al., 2000].

Now, we compare the mean CLaMS correlations (red curves) with the black curve

in Fig. 3 as well as the CLaMS nearest APs along the flight track (red triangles) with the

corresponding ACATS observations (black diamonds). As discussed above, a weak change of

tracer-tracer correlations was observed between the beginning of February and mid of March

(blue and black lines in Fig. 3 and Fig. 7) Consequently, we expect that mean CH4/Halon-1211

correlations derived from CLaMS simulations show a similar behavior. For the high and low

resolution studies the cases c) and b) give the best agreement with the experimental data,

respectively.

In addition, the ACATS time series for CH4 measured on March 11, are compared with
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CLaMS results. To allow a proper comparison, we transform the experimental data to a

synoptic time (March 11, 12 UCT) using appropriate forward and backward trajectories and

compare in Fig. 8 the observed CH4 values with corresponding CLaMS results using two Figure 8.

interpolation methods described in the previous section.

Considering the simulated tracer time series with increasing mixing (from top to bottom

of Fig. 8), two properties should be mentioned: mixing smears out fine structures in the model

results that are present in the observations (e.g. filaments in the hatched time segments)

and the CLaMS results along the flight track are becoming independent on the kind of

interpolation used. Furthermore, CLaMS simulations with higher resolution (lower mixing)

reproduce better the tracer gradients at the edges of the filament. Comparing CLaMS with the

experimental data in Fig. 8 (i.e. the green or red curves with the observed time series), one

can see that although the absolute position of the first filament encounter around 9.50 UTC

seems to be well represented in the CLaMS calculations, there is a significant discrepancy

between the simulated and observed filament position around 12 UTC. Using UKMO instead

of ECMWF winds slightly improves the simulations at this point but makes the comparison

for the entire flight significantly worse.

To quantify the agreement between the ACATS observations and CLaMS simulations

we compare in terms of the factor γ (see previous section) the spatial variability of the

corresponding time series. The results are shown in Table 1 where γ � 1 means that the

CLaMS variability of the interpolated time series (nearest neighbor approximation) is

comparable with the variability of the experimental data. Based on such analysis, we infer that

cases c) and b) for r0
� 45 and r0

� 100 km, respectively, give the best agreement with the

observed time series.

4. Impact of mixing on the chemistry

It is an open question to which extent the mixing of activated, ClOx-rich vortex air

with NOx-rich mid latitude air may cause the deactivation of the stratospheric chlorine and,



12

consequently, may influence (hinder) chemical ozone depletion. To quantify this effect, full

chemistry simulations have been carried out employing the low resolution version of CLaMS

(r0
� 100 km) and with different mixing scenarios. The chemical species were initialized as

in Grooß et al. [2001].

Using mixing parameters introduced in the presented tracer studies (i.e. the time step

∆t and the critical Lyapunov exponent λc), we show in Fig. 9 the influence of mixing on the

formation of an ClONO2-collar and the distribution of NO at the vortex edge. One can see Figure 9.

(left side of Fig. 9) that even pure advection study without mixing (top panel) leads to the

formation of a ClONO2-collar on the inner side of the vortex edge (black line). This indicates

that despite a significant denitrification within the vortex (up to 60% simulated with CLaMS),

availably or chemically produced NOx dominates the formation of ClONO2. We discuss this

issue in the next section.

If mixing is introduced in the model, it solely smoothes the ClONO2 distribution and

slightly increases its total (integral) amount within the vortex (with vortex edge identified

by the strongest PV gradient with respect to the equivalent latitude [Nash et al., 1996]). At

θ � 450 K mixing increases the total amount of ClONO2 by 3 and 7% for adjusted and

excessive mixing, respectively, compared with the pure advection study. Even a too high

mixing intensity does not enlarge the ClONO2-collar significantly. It diminishes the ClONO2

gradients across the vortex edge and reduces the structures within the collar region.

Similarly, considering the impact of mixing on the distribution of NO (right side of

Fig. 9), a too diffusive transport (bottom panel) smears out the filamentary structure of the

vortex edge.

This property of mixing can also be seen if observed time series of chemically active

species are compared. On the flight on March 11 the ER-2 crossed the vortex edge twice

(Fig. 9). Observed time series of ClONO2 and NO are compared in Fig. 10 with CLaMS Figure 10.

results to further investigate the impact of the prescribed mixing intensity in the model. In

addition to the weighted interpolation (red curves) discussed in the previous section, we
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correct the CLaMS time series of NO by taking into account its diurnal variation (violet

curves). To this purpose, backward trajectories were calculated from the flight track on March,

11 to a synoptic time on the day before, i.e., March, 10, 12 UTC. Starting at this time, multiple

box model calculations were performed that were initialized by an interpolation from CLaMS

APs (weighted interpolation). The forward chemical calculations were run up to the time of

the measurement. With this method, the effect of the diurnal cycle of photochemically active

species is accounted for.

For both types of interpolation the pure advection studies (top panels in Fig. 10) show

too much structures compared with the observations. Using the corrected interpolation (violet

curve), we can remove systemic discrepancies in the first part of flight between the observed

and simulated NO values. On the other side, too much mixing (bottom panels in Fig. 10)

completely smears out the filaments near the vortex edge. Similar to the tracer studies, case c)

gives the best description of the observed ClONO2 and NO time series.

5. Discussion

The analysis of the CH4 and Halon-1211 measurements of the ACATS instrument

within the altitude range 400 K � θ � 475 K shows only a small influence of mixing on the

tracer distributions within the vortex and near the vortex edge. On the other hand, CLaMS

simulations without mixing (i.e. pure advection studies along the isentropic trajectories)

carried out with spatial resolution r0 higher than 100 km produce small scale structures that are

not present in the experimental data. Increase of the spatial resolution to � 35 km amplifies

such “unphysical fluctuations” and indicates missing mixing as their origin.

CLaMS studies including mixing show that only a “small amount” of mixing is necessary

to describe the observed CH4/Halon-1211 correlations and time series. For a given spatial

resolution of CLaMS, r0, the mixing intensity in the model is controlled by the time step

∆t after which the dynamically adaptive regridding is applied and the critical Lyapunov

coefficient λc is switching mixing on in the flow regions with λ � λc. Thus, the temporally
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and spatially inhomogeneous CLaMS mixing is driven by integral flow deformation over a

time step ∆t with sufficiently high values of the finite-time Lyapunov exponent λ. Sensitivity

studies show that values of the parameters
�
∆t � λc � leading to a best agreement between

CLaMS and experimental data are given by the (black) solid and dashed lines in Fig. 11 Figure 11.

for high (r0
� 45 km) and low (r0

� 100 km) cases, respectively. For ∆t � 24 hours, the

best choice of the critical Lyapunov exponent is for λc between 0.8 and 1.2 day
� 1 with

corresponding lateral effective diffusion coefficient Dc
� of the order 103 m2s

� 1.

It should be emphasized that because of the isentropic approximation used here (in

the presented version CLaMS is transporting species on 4 isolated θ-levels) the (numerical)

diffusivity Dc
� can only be understood as the effective diffusivity Deff describing the

stratospheric mixing in the following sense: During the advection, the CLaMS APs do not

leave the isentropic levels and, consequently, describe the mean properties of a stratospheric

layer with a certain thickness Lv. Taking into account the unresolved vertical shears on the

vertical scales of the order Lv Haynes and Anglade [1997] estimated

Deff � α2Dv � α �
Lh

Lv
(3)

where Dv is the vertical diffusivity and Lh denotes an appropriate horizontal scale. Balluch

and Haynes [1997] argued that Lv and Lh are vertical and horizontal scales on which the

stratosphere is expected to be well mixed and estimated their values as approximately 50

m and 12 km, respectively. The corresponding aspect ratio α � Lh
�
Lv amounts to about

250. Using relation (3) and published values of the vertical diffusivity Tan et al. [1998]

estimated that Deff is probably in the range 6 � 100 to 1.25 � 104 m2 s
� 1. Taking into

account aircraft observations Waugh et al. [1997] inferred that Deff is about 5 � 103 m2 s
� 1.

Mixing in CLaMS generalizes the idea of the (bulk) effective diffusivity Deff to a more

realistic inhomogeneous (i.e. driven by spatial and time dependent flow deformation rates)

and anisotropic (i.e. dependent on the wind direction) mixing quantified in terms of the spatial

resolution r0, time step ∆t, and the critical Lyapunov exponent λc.
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Investigation of the CH4/Halon-1211 correlations (Fig. 7) shows that during the

considered period anomalous mixing events as described by Plumb et al. [2000] are not

present either in the observations nor in the corresponding CLaMS simulations along the ER-2

flight track. Nevertheless, because of the limited coverage of the the ER-2 flight and because

of the presence of the anomalous mixing events in some CLaMS APs poleward of 30 � N (see

dashed blue curves in Fig. 7), we cannot exclude that such events occurred in air masses that

were not sampled by the ER-2.

Finally, using optimized mixing parameters, we compare in Fig. 12 the observed ACATS

CH4 time series with the corresponding CLaMS results for both flights on March 7 and 11.

The investigation of the filaments observed during these flights (hatched areas in Fig. 12) Figure 12.

shows that a weak mixing intensity in the model is sufficient to describe the measurements

properly. Since only small vertical displacements ∆θ � 25 K occurred due to diabatic effects

during the considered period (see Fig. 2), we do not expect a significant change of our results

if diabatic corrections are taken into account. Thus, the transport in the lower stratosphere

between mid of February and mid of March, 2000, is clearly dominated by advection rather

than by mixing. The comparison between CLaMS simulations based on the ECMWF and

UKMO winds shows that the former one matches the observations more properly mainly

owing to a higher data frequency (every 6 hours, UKMO: every 24 hours). E.g. the position of

the filament observed on March 7 (Fig. 12) is described reasonably well if ECMWF winds are

employed whereas using UKMO data the error amounts to � 200 km.

Summarizing, simulations with a weak mixing (see panel c) in Fig. 6) give a better

description of the isentropic species distributions than panel e) where overestimated mixing

intensity is used. Thus, the stratosphere seems to be much more grainy and spotty than the

smooth distributions suggested by Eulerian studies or CLaMS studies with too high mixing

intensity.

Studying the chlorine deactivation in the Arctic vortex between beginning of February

and mid of March we have shown that the influence of mixing on the chemistry was weak.
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The total (integral) amount of ClONO2 formed due to chemistry induced by mixing of the

activated vortex air with NOx-rich mid-latitude air does not exceed 3% of the ClONO2

amount formed without mixing. Even a too high mixing intensity enlarges the amount of

mixing-induced ClONO2 only to 7%.

The influence of mixing on the accumulated ozone loss within the vortex is even smaller,

i.e. of the order � 1%. It should be emphasized that this weak influence of mixing on the

chemistry within the polar vortex can be derived only for the considered period and the

investigated θ-range. Mixing dominated periods are expected during the vortex formation (fall

of 1999) and after mid of March 2000, when the vortex started to decay.

Consequently, the ClONO2-collar observed during the flight on March 11 and

successfully reproduced in CLaMS simulations (even without mixing) can be understood as a

result of deactivation of ClOx-rich vortex air with initially present or locally produced NOx .

The main chemical source of NOx in these APs is the photolytical decomposition of HNO3

and the reaction of HNO3 with OH. Thus, in accordance with the study of Chipperfield et al.

[1997] for the winter 1991/92, it is in situ chemical deactivation of ClOx and not mixing that

produces the ClONO2-collar during the considered period.

Using optimized mixing parameters, the CLaMS distributions of ClONO2, ClOx, HCl

and NOx on March 11, 12 UCT at θ � 450 K are shown in Fig. 13. Note that the inner and Figure 13.

outer edges of ClONO2-collar (top left) agree fairly well with the strong gradients of ClOx

(top right) and HCl (bottom left) or NOx (bottom right), respectively. Thus, the outer edge of

ClONO2-collar is defined by the area of ClOx-activation, i.e. outside of this edge ClOx was

not formed. Air masses bounded by this edge are vortex air masses; the boundary itself can be

approximated by the vortex edge identified by the strongest PV gradient with respect to the

equivalent latitude [Nash et al., 1996] (black line in Fig. 13). The inner edge of ClONO2-collar

is determined by the vortex core where strong denoxification through the formation of HNO3

occurred. The formation of ClONO2 within this region is deleted through the presence of

PSCs leading to a re-activation of ClOx. Consequently, strong ClONO2 gradients across the
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inner edge can be observed. The mixing ratios within ClONO2-collar depend on the degree of

ClOx-activation experienced by the APs in the past (complete activation corresponds to high

ClONO2 -values).

6. Conclusions

The isentropic version of the chemistry transport model CLaMS was used for the

interpretation of ER-2 tracer measurements obtained during the second and third segment of

the SOLVE campaign in February and March 2000. In particular, the intensity of mixing

between the vortex and mid-latitude air masses near the vortex edge and its impact on the

chemistry were studied.

A comparison of the measured CH4/Halon-1211 correlation curves and time series with

corresponding CLaMS results indicates weak mixing between vortex and mid-latitudes air

without pronounced anomalous mixing events. Thus, the Arctic vortex in the θ-range between

400-475 K was well-isolated during the considered period without significant mass exchange

across the vortex edge.

The CLaMS simulations show the best agreement with tracer observations if the lateral

(across the wind) effective diffusion coefficient is of the order 103 m2s
� 1.

The amount of ClONO2 formed due to chemistry induced by mixing of the activated

vortex air with NOx-rich mid-latitude air does not exceed 3%. The influence of mixing on the

accumulated ozone loss is even smaller than � 1%. The ClONO2-collar observed during the

flight on March 11 can be understood as a result of deactivation of ClOx through the chemical

production of NOx from HNO3 without significant contribution of mixing with NOx-rich

mid-latitude air.
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Figure Captions

Figure 1. ClaMS distribution of CH4 in θ � 450 K on March 7 (top) and March 11 (bottom) together

with the ER-2 flight track transformed to the synoptic time 12 UCT. For the calculation the optimized

mixing intensity was used (see text). On March 7 the ER-2 touched near Spitzbergen a filament of

extra-vortex air whereas on March 11 a stretched filament of vortex air was crossed twice at the vortex

edge (black line) over Scandinavia.
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Figure 2. Top left: Potential vorticity (PV) derived from UKMO data shown as a vertical cross section

of the vortex containing the ER-2 flight track on March 11, 2000. Bottom left: The same but with with

the RDF PV (15 days) calculated by use of the 3d trajectories derived from isentropic UKMO winds

and diabatic correction based on the Morcrette [1991] scheme. The time segments where filaments were

observed are denoted as hatched regions. Top right: The observed CH4 and Halon-1211 mixing ratios

(ACATS). Middle right : Analyzed PV (black) and RDF-PV (red) along the flight track. Note that the

RDF-PV fairly well reconstructs some of the observed tracer structures (hatched regions) and allows to

interpret them as filaments of vortex air. Bottom right: The vertical displacement of the trajectories for

15 and 30 days RDF calculations. Positive (negative) values denote descent (ascent) of the air parcels.

Values of
�
∆θ

���
20 K justify the isentropic approximation used in CLaMS studies. All RDF time series

are smoothed to remove the unphysical small-scale structures
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Figure 3. CH4/Halon-1211 correlations (ACATS) derived from all ER-2 flights between January 6, and

March 16 using polynomial fits (solid lines). The small difference between the blue (flights between

6.01 and 3.02, yellow triangles) and the black line (flights between 26.02 and 16.03, pink diamonds)

indicates a weak influence of mixing on the Arctic stratosphere. Mixing events along the dashed lines

(the so-called anomalous mixing [Plumb et al., 2000]) were not observed during the considered period.
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Figure 4. Pure advective transport of CH4 (CLaMS without mixing) on March 11 for different model

resolutions r0. The trajectories are calculated from February, 10 to March 11, 12 UCT. Using for- or

backward trajectories the (asynoptic) ER-2 flight is transformed to a synoptic time (March 11, 12 UCT).

For comparison, the results of tracer transport are interpolated onto the synoptic ER-2 flight track either

by taking into account only the nearest (green) or all the next neighbors (red).
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Figure 5. Dependence of the diffusion coefficients Dc� on the model parameters r0, ∆t and λc. Top:

Assuming ∆t � 24 hours and λc � 1 � 2 day � 1, Dc� is plotted versus r0. The dashed regions denote CLaMS

horizontal resolutions discussed in this paper together with their small variation due to the adaptive grid

procedure. Bottom: This figure allows to estimate Dc� for arbitrary values in the
�
∆t � λc � space. The

relative values of Dc� and Dc� (relative to Dc� �
r0 � with ∆t � 24 hours, and λc � 1 � 2 day � 1, see top panel)

can be estimated from the blue and green isolines λc � λ
�
c

�
∆t � (derived from (2)), respectively. The red

points denote the maximal value of λc for a given time step ∆t derived from isentropic ECMWF winds

at θ � 450 K during the considered time period. The polynomial spline (red) connects these points.

Thus, Dc�
� 0 for

�
∆t � λc � points lying above the red curve (pure advection). For two model resolution

r0 � 45 and 100 km, we study the influence of mixing following the black path in the
�
∆t � λc � space

starting at point a) (no mixing), then moving to points b) (mixing too small), c), d), and finally reaching

point e) (mixing too high). A significant increase of mixing along this path is caused by the increase of

the lateral (effective) diffusivity Dc� .
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Figure 6. CLaMS distribution of CH4 at θ � 450 K on March 7, 2000, 12 UCT (r0 � 45 km) together

with the ER-2 flight transformed to a synoptic time. Left: Orthographic projection between 45 and 90

N. Right: The cylindric projection of a magnified section containing the ER-2 flight. The black line

denotes the vortex edge identified by the strongest PV gradient with respect to the equivalent latitude

[Nash et al., 1996]
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Figure 7. CLaMS CH4/Halon-1211 correlations for March 11, 2000 derived for two different reso-

lutions r0 (left: 45 km, right: 100 km) and increasing mixing intensities changing from a) through c)

to e) (see Fig. 5). The blue solid and dashed lines denote the outer (initial canonical correlation) and

inner envelops of all CLaMS APs northward 30 � N, respectively. A polynomial fit through these points

is given by the red line. For comparison, the ACATS data obtained during the flight on March 11 (black

diamonds) and the corresponding CLaMS results (red triangles) are shown.
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Figure 8. CLaMS versus ER-2 time series on March 11 derived for two different resolutions r0 (left: 45

km, right: 100 km) and increasing mixing intensities changing from a) through c) to e). The observed

values of CH4 are transformed to a synoptic time (March 11, 12 UCT) by use of the isentropic trajec-

tories. Two types of interpolation are used: either by taking into account only the nearest (green) or all

the next CLaMS neighbors (weighted interpolation, red).
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Figure 9. Influence of an increasing mixing intensity in the model (from top to bottom) on the formation

of ClONO2 (left) and on the NO distribution (right) on March 11 at the edge of the polar vortex over

Scandinavia at θ � 450 K. The black line denotes the edge of the polar vortex identified by the strongest

PV gradient with respect to the equivalent latitude [Nash et al., 1996].
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Figure 10. Sensitivity of the simulated ClONO2 (left) and NO (right) time series with respect to mix-

ing (top: pure advection, middle: best choice, bottom: mixing too high) The black diamonds denote

the measured mixing ratios. The red curve describes interpolated CLaMS values along the synoptic

track (weighted interpolation, see Fig. 8). The violet curve additionally takes into account the diurnal

variations of NO. Within the hatched time segments the vortex edge was crossed.
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Figure 11. The dashed area denotes the
�
∆t � λc � where best agreement with experimental data was

achieved for spatial resolutions r0 � 45 km (solid) and 100 km (dashed). The maximal values of λc

for a given time step ∆t derived from isentropic ECMWF winds at θ � 450K during the considered

time period are shown by the red line. Thus, choosing
�
∆t � λc � values above this curve, the transport is

reduced to a pure advection.
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Figure 12. CLaMS results with r0 � 45 km and optimized mixing for March 7 (top) and 11 (bottom)

compared with experimental data. The hatched areas denotes regions were filaments were encountered.
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Figure 13. Formation of ClONO2-collar on March 11 together with the vortex edge identified by the

strongest PV gradient with respect to the equivalent latitude [Nash et al., 1996]. Top left: The ClONO2-

collar is defined by its inner and outer edges. Top right: Enhanced ClOx mixing ratios in the interior

of the vortex are only possible due to strong denoxification (i.e. transformation of NOx to HNO3) of

the vortex core and the presence of PSCs re-activating the fresh formed ClONO2. This area defines

fairly well the inner edge of the ClONO2-collar. Bottom left: Strong decrease of HCl within the vortex

defines the region of chlorine activation and the outer range of the ClONO2-collar. Bottom right: The

small NOx-values within the vortex are caused either by the denoxification (vortex core) or by the

deactivation (ClONO2-collar).
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Table 1. Spatial variability of the simulated CH4 time series fs (nearest neighbor

approximation) for CLaMS studies without and with mixing compared with the experimental

data fexp containing n data points. Here the ratio γ � ∆s
�
∆exp is determined with

∆l � ∑n
i � 1

�
fl

�
ti

�
1 ��� fl

�
ti � � and l � s � exp.

CLaMS without mixing CLaMS with mixing

Resolution (km) γ Case γ, (r0=45 km) γ, (r0=100 km)

200 0.78 a) 1.78 0.89

100 0.89 b) 1.48 1.10

60 1.27 c) 1.06 0.89

45 1.78 d) 0.93 0.64

30 1.92 e) 0.82 0.60
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Table 2. Mixing intensity in terms of the lateral effective

diffusivity Dc� calculated for different resolutions r0 and

different values of ∆t and λc along the black path in

Fig. 5.

Case ∆t [h] λc [d � 1] Dc� [m2s � 1] Dc� [m2s � 1]

r0=45 km r0=100 km

a) 24 ∞ 0.0 0.0

b) 24 1.5 2 � 9 � 102 1 � 4 � 103

c) 24 1.2 5 � 3 � 102 2 � 6 � 103

d) 12 1.5 2 � 6 � 103 1 � 3 � 104

e) 12 1.2 3 � 5 � 103 1 � 7 � 104


