000256461 001__ 256461
000256461 005__ 20210129220724.0
000256461 0247_ $$2doi$$a10.1039/C5NR03608A
000256461 0247_ $$2ISSN$$a2040-3364
000256461 0247_ $$2ISSN$$a2040-3372
000256461 0247_ $$2WOS$$aWOS:000364048900025
000256461 037__ $$aFZJ-2015-06368
000256461 041__ $$aEnglish
000256461 082__ $$a600
000256461 1001_ $$0P:(DE-Juel1)140272$$aHeedt, Sebastian$$b0$$eCorresponding author
000256461 245__ $$aResolving ambiguities in nanowire field-effect transistor characterization
000256461 260__ $$aCambridge$$bRSC Publ.$$c2015
000256461 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1446560087_12655
000256461 3367_ $$2DataCite$$aOutput Types/Journal article
000256461 3367_ $$00$$2EndNote$$aJournal Article
000256461 3367_ $$2BibTeX$$aARTICLE
000256461 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000256461 3367_ $$2DRIVER$$aarticle
000256461 520__ $$aWe have modeled InAs nanowires using finite element methods considering the actual device geometry, the semiconducting nature of the channel and surface states, providing a comprehensive picture of charge distribution and gate action. The effective electrostatic gate width and screening effects are taken into account. A pivotal aspect is that the gate coupling to the nanowire is compromised by the concurrent coupling of the gate electrode to the surface/interface states, which provide the vast majority of carriers for undoped nanowires. In conjunction with field-effect transistor (FET) measurements using two gates with distinctly dissimilar couplings, the study reveals the density of surface states that gives rise to a shallow quantum well at the surface. Both gates yield identical results for the electron concentration and mobility only at the actual surface state density. Our method remedies the flaws of conventional FET analysis and provides a straightforward alternative to intricate Hall effect measurements on nanowires.
000256461 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000256461 588__ $$aDataset connected to CrossRef
000256461 7001_ $$0P:(DE-HGF)0$$aOtto, Isabel$$b1
000256461 7001_ $$0P:(DE-HGF)0$$aSladek, Kamil$$b2
000256461 7001_ $$0P:(DE-Juel1)125593$$aHardtdegen, Hilde$$b3
000256461 7001_ $$0P:(DE-Juel1)128631$$aSchubert, Jürgen$$b4
000256461 7001_ $$0P:(DE-Juel1)125576$$aDemarina, Nataliya$$b5
000256461 7001_ $$0P:(DE-Juel1)128608$$aLüth, Hans$$b6
000256461 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b7
000256461 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Thomas$$b8$$eCorresponding author
000256461 773__ $$0PERI:(DE-600)2515664-0$$a10.1039/C5NR03608A$$gVol. 7, no. 43, p. 18188 - 18197$$n43$$p18188 - 18197$$tNanoscale$$v7$$x2040-3372$$y2015
000256461 8564_ $$uhttps://juser.fz-juelich.de/record/256461/files/c5nr03608a.pdf$$yRestricted
000256461 909CO $$ooai:juser.fz-juelich.de:256461$$pVDB
000256461 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140272$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000256461 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000256461 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128635$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000256461 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125593$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000256461 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128631$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000256461 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125576$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000256461 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128608$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000256461 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000256461 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000256461 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000256461 9141_ $$y2015
000256461 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOSCALE : 2014
000256461 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000256461 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000256461 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000256461 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000256461 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000256461 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000256461 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000256461 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000256461 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNANOSCALE : 2014
000256461 920__ $$lyes
000256461 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000256461 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000256461 980__ $$ajournal
000256461 980__ $$aVDB
000256461 980__ $$aI:(DE-Juel1)PGI-9-20110106
000256461 980__ $$aI:(DE-82)080009_20140620
000256461 980__ $$aUNRESTRICTED